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Abstract  
 

Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of 

income and food security, with the highest per capita consumption worldwide. Pests, 

pathogens and environmental stress hamper sustainable production of bananas. Effort is 

being made to improve the East African highland bananas (EAHB) through conventional 

crossbreeding, but the selection cycle is too long. Improving the efficiency of selection 

in conventional crossbreeding is a major priority in banana breeding. Marker assisted 

selection (MAS) has the potential to reduce the selection cycle and increase genetic gain. 

However, the application of molecular tools has been hampered by the limitations 

inherent with the classical MAS tools and nature of traits in banana. While genomic 

selection can address some of the limitations of classical MAS, no report about its utility 

in banana is available to date. This Thesis provides the first empirical evidence on the 

performance of six genomic prediction models for 15 traits in a banana genomic selection 

training population based on genotyping by sequencing (GBS) data. The prediction 

models tested were Bayesian ridge regression (BRR), Bayesian LASSO (BL), BayesA, 

BayesB, BayesC and reproducing kernel Hilbert space (RKHS). The aim was to 

investigate the potential of genomic selection (GS) as a method of selection that could 

benefit breeding through increased genetic gain per unit time and cost. Trait variation, the 

correlation between traits and genetic diversity in the training population were analyzed 

as an essential first step in the development and selection of suitable genomic prediction 

models for banana traits. A training population of 307 genotypes consisting of EAHB 

breeding material and its progeny was phenotyped for more than 15 traits in two 

contrasting conditions for two crop cycles. The population was also genotyped by simple 

sequence repeats (SSR) and single nucleotide polymorphism (SNP) markers. Clustering 

based on SSR markers revealed that the training population was genetically diverse, 

reflecting a complex pedigree background, which was mostly influenced by the male 
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parents. A high level of correlation among vegetative and fruit bunch related traits was 

observed. Genotype response to crop cycle and field management practices varied greatly 

with respect to traits. Fruit bunch related traits accounted for 31–35 % of principal 

component variation under low and high input field management conditions. The first 

two principal components accounted for 50 % of phenotypic variation that was observed 

in the training population. Resistance to black leaf streak (Black Sigatoka) was stable 

across crop cycles, but varied under different field management depending on the 

genotype. The best cross combination was 1201K-1 × SH3217 based on selection 

response (R) of hybrids. The predictive ability of genomic prediction models was 

evaluated for traits phenotyped over two crop cycles and under different cross validation 

strategies. The 15 traits were grouped into five categories that included plant stature, 

suckering behaviour, black leaf streak resistance, fruit bunch and fruit filling. Models that 

account for additive genetic effects provided better predictions with 12 out of 15 traits. 

The performance of BayesB model was superior to other models particularly for fruit 

filling and fruit bunch traits. Reproducing kernel Hilbert space model fitted with pedigree 

and marker data (RKHS_PM) produced mixed results with the majority of traits showing 

a decrease in prediction accuracy. Although RKHS models account for dominance and 

epistasis, heterosis is another non-additive genetic factor that affects prediction accuracy 

in bananas.  Models that included averaged environment data for crop cycle one and two 

were more robust in trait prediction even with reduced numbers of markers. Accounting 

for allelic dosage decreased the predictive ability of all models by 15 % on average, but 

the trend of correlation between predicted and observed values remained the same across 

traits and within trait categories as predicted by bi-allelic SNP markers. Since high 

correlation in prediction was observed within trait categories, only traits easy to 

phenotype should be considered for genomic predictions during the breeding phase. 

Although validation and more optimization of model parameters is still required, the high 
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predictive values observed in this study confirmed the potential of genomic prediction in 

selection of best parents for further crossing and in the negative selection of triploid 

hybrids with inferior fruits to reduce the number of progenies to be evaluated in the field.       
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1 General introduction 

 

1.1 Origin of banana 

Bananas and plantains are large perennial herbaceous monocotyledonous plants 

collectively known as bananas. They belong to the order Zingiberales, family Musaceae 

and genus Musa. The genus Musa has about 70 confirmed species, which include edible, 

ornamental types and their wild relatives. It was previously divided into five sections: 

Australimusa (2n = 2x = 20), Callimusa (2n = 2x = 20), Eumusa (2n = 2x = 22), 

Rhodochlamys (2n = 2x = 22) and Ingentimusa (2n = 2x = 14) (Swennen and Vuylsteke 

2001; Daniells et al. 2001; Wong et al. 2002). However, the recent revision by Häkkinen 

(2013) recognizes only section Callimusa, which combines Australimusa and Callimusa, 

and section Musa, which combines Eumusa and Rhodochlamys. Section Ingentimusa was 

considered as part of section Callimusa. This revision is supported by evidence from 

molecular studies (Hřibová et al. 2011). 

 

Cultivated bananas are believed to have arisen by intra- and inter-specific hybridization 

between Musa acuminata (AA genome) and Musa balbisiana (BB genome) species at the 

area of origin (INIBAP, 1995). The two species belong to section Musa (formerly 

Eumusa). They are wild diploid bananas endemic in the Asia and Pacific regions, which 

includes: India, Southeast Asia, Malaysia, Indonesia, Philippines and Papua New Guinea 

(Sharrock et al. 2001). Most diversity is found in M. acuminata, which has several 

subspecies including, for example, M. a. ssp. burmannica, M. a. ssp. siamea, M. a. ssp. 

malaccensis, M. a. ssp. truncata, M. a. ssp. microcarpa, M. a. ssp. zebrina, M. a. ssp. 

errans and M. a. ssp. banksii (Fig 1). Bats (Glossophaga soricina) are one of the natural 

pollinators that could have facilitated the hybridization and seed dispersal process in the 

wild (Buddenhagen 2008). Later, female sterility developed such that even pollinated 
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flowers produced seedless fruits (Simmonds, 1962). It is also likely that erratic meiosis 

within improved diploids followed by backcrossing gave rise to parthenocarpic triploids 

(De Langhe et al. 2010; Perrier et al. 2011). Human intervention accelerated the process 

of banana evolution and domestication. Hybrids that were seedless (parthenocarpic), 

palatable and had good agronomic traits were selected and grown near human settlements. 

 

Fig 1. Geographical distribution of banana domestication areas is Southeast Asia (Perrier et al. 2011) 

 

The wide spread of many popular cultivated seedless bananas could have occurred by 

traders from Arabia, Persia, India and Indonesia who navigated the Indian Ocean from 

Southeast Asia (INIBAP 1995) (Fig 2). As they moved, they carried along with them 

suckers of different cultivars with a broad mixture of genomic combinations between M. 

acuminata (AA) and M. balbisiana (BB), and ploidy levels. These included diploid (AA, 

AB), triploid (AAA, AAB, ABB) and tetraploid (AAAB, AABB, ABBB) that were 

delivered to the coastal areas. Within these genomic combinations, we have East African 

highland cooking (matooke) and beer bananas (both AAA), dessert bananas (AAA and 
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AAB), plantains (AAB), cooking bananas (ABB) and Mshare, or Mchare bananas (AA). 

Likewise, the Portuguese and Spaniards between 16th and 19th century, carried bananas 

to all over tropical America (INIBAP 1995). However, several domestication pathways 

have been proposed (Perrier et al. 2011).  

 

 

Fig 2. Distribution pathways of domesticated bananas from Asia Pacific to Africa and other tropical 

areas (Perrier et al. 2011) 

 

1.2 Importance of banana 

For several centuries, bananas have been an integral part of the farming systems 

especially in the tropics and sub-tropics. The crop is grown in 130 countries worldwide 

(Workman 2006; Evans and Ballen 2012). Bananas contribute tremendously to the 

livelihood of resource-poor populations especially in the sub-Saharan Africa by providing 

food security and income (FAO, 2010). Sub-Saharan Africa produces nearly a third of 

global banana production. The utility of banana depends on the genotypes and area. In 

the temperate countries, the most commonly consumed bananas are the dessert type 

(Cavendish, AAA). Cavendish banana is grown for export and it is a cash crop, thus a 

source of income for the exporting countries. The fruit are eaten when ripe yellow. 
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However, in other countries, Pome, Silk, Mysore and Sukali Ndizi (AAB bananas) are 

also consumed as dessert bananas. Plantains are AAB bananas with high starch content 

and the fruit remains very firm even after ripening. They are mostly eaten after roasting 

and they make good chips as well.  

 

In East Africa, there are two main groups of bananas that are endemic in the region. The 

EAHB (AAA) and the Mshare (AA). They are grown in areas around Lake Victoria, the 

highlands and part of the rift valley where severe drought periods are not experienced 

during the year (Karamura 1998). In Uganda, Rwanda and Burundi, the per capita 

consumption of banana is estimated at 400-600 kg per year, the highest in the world, 

indicating that the crop is a major staple in the region (Karamura et al. 1998). EAHB are 

divided into cooking (matooke) and beer bananas. The term matooke is synonymous to 

food in Uganda and these bananas are cooked when fresh green in different forms. 

However, during peak harvesting seasons, the surplus matooke is used for wine 

production in Western Uganda. The beer bananas are very astringent due to high tannin 

content (http://www.promusa.org/Uganda). They are allowed to ripen, juice is squeezed 

out of the pulp and fermented to make beer, hence the name beer banana, also known as 

Mbidde. The Mshare bananas have high starch content with firm pulp texture and are 

mostly roasted before eating. 

 

India is the highest producer of ABB cooking bananas. These bananas have starchy fruits 

and sometimes are cooked when ripe for example, Saba and Bluggoe. In East Africa, 

about 85% of produced bananas are consumed locally due to high demand and only a 

small percentage is exported (Ortiz and Swennen 2014). Bananas provide about 25% of 

food energy requirements for around 90 million people in East, West and Central Africa 

(Sharrock et al. 2001).  
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1.3 Main banana production areas 

The highest production of bananas occurs in India followed by China and East Africa. 

Uganda in particular produces about 10 million metric tons per year (De Buck and 

Swennen 2016). East Africa is considered a secondary centre of banana genetic diversity 

harboring over 84 cultivars that are not found elsewhere in the world. It is believed that 

EAHB are a product of single hybridization event that were introduced by Arab traders 

at the East African coast way back in 600 A.D (Karamura 1998) and over the time, several 

somatic mutations and selection pressure led to the origin of many distinct cultivars grown 

in the region (Kitavi et al. 2016). The EAHB subgroup (AAA) was named Lujugira-

Mutika (Shepherd 1957). The accessions in Uganda have been grouped into five clone 

sets (Nfuuka, Nakitembe, Nakabululu, Musakala and Mbidde) based on end-use and 

morphological distinctiveness (Karamura 1998). The Mbidde clone set is used for beer 

production due to the astringency of fruit when fresh green while the rest of the clone sets 

are used as matooke.  

 

Banana plants grow with varying degrees of success in diverse climatic conditions, but 

commercial banana plantations are primarily found in equatorial regions comprising of 

the humid tropics and subtropics. In the primary centre of genetic diversity (Asia and 

Pacific), several hundreds of different banana cultivars are grown alongside other wild 

uncultivated genotypes. In West Africa, especially in Nigeria and Cameroon, large fields 

of plantain cultivars are maintained (Ortiz and Vuylsteke 1994) as well as in Latin 

America. The Caribbean countries mostly grow the Cavendish bananas, which are mainly 

exported to Europe and United States, accounting for 13% of export banana (FAO 2014).  
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1.4 Production challenges 

Reductions in productivity of landrace banana fields in various countries have been 

reported (Macharia et al. 2010). The causes are pests, pathogens and environmental stress 

(Jones, 2000; Biruma et al. 2007; Kumar et al. 2011, van Asten et al. 2011, Swennen et 

al. 2013). The major pests include banana weevils (Cosmopolites sordidus, Gold et al. 

2004; Sadik et al. 2010) and the parasitic nematodes (Fig 3). Many nematode species have 

been associated with banana yield decline and amongst them are Radopholus similis, 

Helicotylenchus multicinctus and Pratylenchus goodeyi (Dochez 2004). These infect and 

damage banana roots that leads to toppling of plants due to poor anchorage.  

 

Bacterial, fungal and viral diseases affect bananas, causing varying degrees of yield loss 

(Jones, 2000). For instance, banana bacterial wilt caused by Xanthomonas campestris pv. 

musacearum reduces crop yield by up to 100% (Biruma et al. 2007). Black leaf streak 

also known as Black Sigatoka is a disease caused by a fungus Pseudocercospora fijiensis 

previously known as Mycosphearella fijiensis, that affects banana leaves (ProMusa 2002) 

reducing yield by 30-50% (Rowe and Rosales, 1996). Fusarium wilt also known as 

Panama disease is a soil borne disease caused by a fungus Fusarium oxysporum f. sp. 

cubense. It caused significant losses in the banana export industry when large plantations 

of cv. ‘Gros Michel’ were wiped out in the 1940-1960s (Stover 1962; Ploetz 2000). The 

export industry was revived when a banana cultivar called Cavendish was discovered to 

grow in areas where cv. ‘Gros Michel’ had been wiped out (Simmonds 1954). It was 

tested to be resistant to F. oxysporum f. sp. cubense (Foc) race 1 and race 2 and it replaced 

the cv. ‘Gros Michel’ as a commercial cultivar for global export markets. 

 

Foc is divided into four races that include race 1, race 2, race 3 and race 4. However, Foc 

race 3 does not affect banana, but Heliconia species, which belongs to the same order as 
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bananas thus, only three races are important to banana (Czislowski et al. 2017). The order 

of races reflects the increasing pathogenicity of Foc, hence all cultivars that are 

susceptible to race 1 and 2 are susceptible to race 4. Race 4 is further subdivided into the 

tropical race 4 (TR4) and sub-tropical race 4 (STR4). In East Africa, Foc race 1 affects 

ABB (Pisang Awak) and AAB (Sukali Ndizi) banana varieties but not the AAA (EAHB). 

The tropical race 4 (TR4) affects the commercial banana (cv. Cavendish), which replaced 

cv. ‘Gros Michel’ despite its resistance to other Foc races. Incidences of TR4 have been 

reported in Indonesia and Mozambique (Ploetz 2015), but it is not yet known if the EAHB 

and other cultivars will resist, or succumb to TR4. Of late, banana bunchy top virus 

(BBTV) transmitted by Pentalonia nigronervosa (banana aphid), though first reported in 

1889 in many Asian banana growing countries, is reported to affect areas of Rwanda, 

Burundi and parts of Democratic Republic of Congo including many other banana-

growing areas. It is said to be more significant on plantains than EAHB (Kumar et al. 

2011), causing significant yield decline in those areas.  

 

Among the abiotic constraints, limited rainfall (drought stress) reduces banana production 

especially in rain-fed agricultural systems. Since bananas are mostly grown in tropics and 

sub-tropics, taking a global and long-term view, the availability of water is thought to be 

the most critical limiting factor for photosynthesis on dry land, and hence for agricultural 

production (van Asten et al. 2011). Bananas require more than 1500 mm/year of rainfall 

for optimal growth and yield, but in many areas the average annual rainfall is ≤ 1200 

mm/year (Taulya 2015). Drought stress causes stomatal closure and has deleterious 

effects on numerous physiological processes. It reduces photosynthesis and damages the 

photosynthetic machinery of chloroplasts through a process known as photo-oxidation 

(Audran et al. 1998). Hence, the most productive plant communities are the ones best 

supplied with water (Öpik et al. 2005). Under situations of mild drought stress, production 
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has been shown to increase if potassium supply is sufficient (Taulya 2015), but not many 

farmers in developing countries use fertilizers, or apply sufficient mulch in the banana 

fields. 

 

Cultivated bananas are vegetatively propagated, which limits gene flow and 

recombination, and hampers their potential to evolve and adapt to the changing 

environmental (biotic and abiotic) pressures (Myles 2013). Although the improvement of 

agronomic practices can lead to higher yield (Ndabamenye et al. 2012), sustainability is 

limited. Breeding for resistant cultivars is the only sustainable solution to banana 

production constraints (Simmonds 1986; Rowe 1990).   
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Fig 3: Main production constraints affecting East African highland banana. Banana field (A) infected 

with black leaf streak disease spreads spores from infected leaves (B) to a healthy plantation (D). 

Photosynthetic area is reduced by increasing leaf senescence, which affects yield. Banana fruit from plants 

infected by bacterial wilt (C) are rotten and not edible. The inoculum from infected plants is transmitted to 

the young health plants through farm tools and insects. R. similis (H) burrows into the banana roots causing 

necrosis (G). Plant anchorage into the soil and nutrient uptake are reduced, which lead to toppling (E). The 

adult banana weevil (J) lays eggs into the banana pseudostem, which hatch into larvae (I). The larvae make 
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tunnels into the corm (F) that impede nutrient movement and weaken the attachment of pseudostem to the 

corm, resulting in plant snapping.  

 

1.5 History of banana breeding programs 

Several inter- and intra-specific hybridization events that took place in the wild were 

facilitated by natural pollinators. They gave rise to hybrids that had lost many of the wild 

characteristics and had attributes attractive to humans such as high yield, plant vigour, 

seedlessness and palatability of fruits (Simmonds 1962). The ability of man to select and 

domesticate the best hybrids was the most primitive and by far the most successful 

method of banana breeding. The selected cultivars were clonally propagated and spread 

over a wide area across the world (Perrier et al. 2011). Rapid evolution for better 

adaptation of the selected cultivars has been limited under nature’s dynamic forces 

because of three main reasons: (i) most of the selected hybrids are sterile/partially sterile 

(Heslop-Harrison and Schwarzacher 2007), (ii) banana propagation and distribution is by 

vegetative means (Zohary 2004), and (iii) male fertile diploids are not grown in farmers’ 

fields. Changes in the environment have increased pests and pathogens pressure making 

most cultivars susceptible. 

 

The first breeding program was initiated in 1922 in Trinidad and later in 1924 in Jamaica. 

However, the first successful breeding program to release improved, farmer-acceptable 

hybrids was in Honduras, founded in 1984 called Fundación Hondureña de Investigación 

Agrícola (FHIA). In addition to FHIA, relatively few crossbreeding programs have been 

established in the world that are active and these include the International Institute of 

Tropical Agriculture (IITA) in Nigeria where research on banana/plantains started 

in1976, but the actual breeding started in 1987 (Ray 2002). In Uganda, IITA breeding 

work to improve the EAHB was initiated in 1994 by the late Dirk Vuylsteke (Vuylsteke, 
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2001). This is done in collaboration with the National Agricultural Research Organization 

(NARO). Since 2011, IITA extended its breeding activities to Arusha in Tanzania where 

breeding of Mshare bananas is ongoing. In Brazil, the Empresa Brasilliera de Pesquisa 

Agropecuaria (EMBRAPA) was established in 1982 with the main focus on improving 

the Pome and Silk, ‘AAB’ bananas. In France, the Centre de Coopération Internationale 

en Recherche Agronomique pour le Développement (CIRAD) began in 1983. It has 

stations in the Caribbean (Guadeloupe and Martinique) and Cameroon with their main 

offices in Montpellier. They focus on plantains and other banana types with the exception 

of EAHB and Mshare. Another active breeding program that was initiated as part of the 

agreement between the Ministers of Research and Development for West and Central 

African countries in 2001 is the Centre Africain de Recherches sur Bananiers et Plantains 

(CARBAP) in Cameroon, which focuses more on plantain improvement. Other 

institutions such as Bioversity International hosted by Katholieke Universiteit Leuven, 

Belgium, support the activities of these major breeding programs by maintaining the 

world’s banana germplasm collection, called the International Musa Germplasm Transit 

Centre - ITC (Ray 2002; Dochez 2004; Lorenzen et al. 2010).  

 

1.6 Breeding strategies 

Three main strategies are used in banana improvement. When natural sources of 

resistance are available within the germplasm pool, conventional crossbreeding is used 

(Persley and George 1996, Ortiz and Swennen 2014). This strategy is simple and requires 

skills in phenotypic variation, taxonomy and genetics, but it is costly, labour intensive 

and time consuming due to the long selection cycle. Use of doubled haploids (Umber et 

al. 2016) and autotetraploids from chromosome doubled diploids (do Amaral et al. 2015) 
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to fix important traits and reduce the selection cycle are practiced in conventional 

crossbreeding, but on a small scale.  

 

The second strategy is marker assisted selection (MAS). In this approach, mapping 

populations from two parents with contrasting phenotypes are developed. The population 

is genotyped and phenotyped to identify DNA loci and markers that co-segregate in the 

presence, or absence of the trait. If the markers and loci controlling the trait are in linkage 

disequilibrium, then the breeder can use these markers to track the trait of interest in 

breeding populations (Collard et al. 2005). This approach is sometimes limited by the cost 

of marker development, high cost of assays for large populations, lack of good mapping 

populations for agronomically and economically important traits, and the need for 

technical capacity and modern infrastructure.  

 

When natural sources of resistance are not available in the species germplasm as is the 

case with banana bacterial wilt, then genetic transformation remains the only strategy of 

choice (Tripathi et al. 2010). This involves the introduction of foreign genes into the target 

organism. However, this technology is limited to traits that are controlled by a single 

gene, or few genes with major genetic effects. Use of genetic engineering approaches to 

quantitative traits has not been done in banana.   

 

1.6.1 Constraints in conventional crossbreeding of bananas 

Conventional banana crossbreeding starts with the identification of the right parents to 

cross. At flowering, hand pollination is done. Pollen from a fertile diploid is rubbed onto 

stigma of newly opened female flowers every morning. It is hard to predict the outcome 

of crosses because of limited knowledge about the genetics of parental clones and how 

traits are inherited. The success of conventional crossbreeding relies on large numbers of 
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hybrids from which selection is made (Ortiz and Swennen 2014). The hybrids generated 

come from several cross combinations of parental clones that differ in ploidy (Fig 4). The 

erratic meiosis of polyploids causes production of gametes with unpredictable 

chromosome constitution. While some gametes are haploid, others carry unreduced 

number of chromosomes, or additional chromosomes leading to variable ploidy levels 

and aneuploids in hybrids. Flow cytometry has been used to ascertain the ploidy level in 

bananas (Doležel 1997). A flow cytometer is used to measure the fluorescence intensity 

of cell nuclei stained by a DNA fluorochrome such as propidium iodide (PI), or 4´,6-

diamidino-2-phenylindole (DAPI). As the fluorescence is proportional to DNA amount, 

the assay is suitable for ploidy estimation. 

 

 

Fig 4. Crossbreeding scheme for improvement of East African Highland bananas showing crosses 

involving parents of different ploidy levels 

 

Getting many hybrids in banana breeding is a challenge due to partial, or complete 

sterility of cultivars that have to be improved (Ssebuliba et al. 2006). This is further 

complicated by low embryo germination (Ssebuliba et al. 2005). Banana seeds do not 
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readily germinate when planted directly in the soil, except for the wild species. Thus, 

banana breeding programs use in vitro embryo rescue techniques to increase the 

germination rate to about 30-40 % of seed embryos using artificial medium (Vuylsteke 

and Swennen 1992) (Fig 5). Despite the difficulty of getting seeds from banana crosses 

and having embryos germinate in vitro, about 90 % of hybrids are never selected and 

advanced from early evaluation trial (EET) to a preliminary yield trial (PYT) because a 

majority do not bear edible fruit, or show other shortcomings. This problem is not unique 

to banana only, but has been encountered in other crops, for example, 99.99 % of the 

52,000 apple seedlings were discarded after 26 years of evaluation by Dresden-Pillnitz, a 

Germany apple-breeding program (Ignatov and Bodishevskaya 2011).   

 

 

Fig 5. Conventional cross breeding steps of EAHB. The disease susceptible triploid EAHB (A) is crossed 

with a disease resistant wild diploid (B). At flowering, the female flowers of EAHB are hand pollination 

(C) by mature pollen from the male flowers (D). The pollinated fruit bunch (E) is covered with a polyethene 

A B 

H 
EET 

C D 

E F 

G 

I J 
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bag to exclude other sources of pollen. After all the hands are pollinated, the bunch cover is removed and 

the fruit bunch is allowed to mature, harvested and ripened before seed extraction (F). The seeds are cracked 

to extract the embryos (G), which are germinated on artificial medium (H). The germinated embryos are 

transferred onto the proliferation medium (I) after which they are cloned and transferred onto the rooting 

medium (J). The resulting plantlets are hardened in a screenhouse after weaning before they are planted in 

the early evaluation trial (EET). 

 

Banana improvement progress is assessed by phenotypic evaluation of hybrids at various 

levels (Ortiz and Vuylsteke 1995b; Ortiz 2016) (Fig 6). The evaluation levels include 

EET, PYT, advanced yield trial (AYT) and multilocational evaluation trial (MET). Newly 

generated hybrids are first planted in the EET and the selection is based on the ability of 

a genotype to produce a good fruit bunch and host plant resistance to black leaf streak for 

at least two crop cycles. The number of replications per genotype in EET range from one 

to three. Usually, less than 10 % of the genotypes are selected from EET. The selected 

genotypes are multiplied so that each genotype is planted in two, or three single row plots 

of five replicates in a PYT (Ortiz and Vuylsteke 1995b). Data on both yield and 

agronomic traits are collected for at least two crop cycles. The quality of fruits is also 

used to select genotypes that are advanced to AYT, or MET. Unlike EET and PYT, which 

are on-station trials, AYT and MET are off-station trials, that involve more replications, 

blocks and different agroecological zones. The purpose of AYT and MET is to evaluate 

the stability of genotype performance under different environmental conditions because 

the genotype by environment (G × E) interaction affects trait expression (Taghouti et al. 

2010; Manrique and Hermann, 2000). These trials are done in collaboration with farmers 

and the selection of best genotypes is more farmer-centred as acceptability of hybrids is 

the key in the final step of cultivar release. Each banana plant occupies an area of 6 m2, 

or 9 m2, depending on the spacing (Tushemereirwe et al. 2015). Hence, going through all 
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these steps requires a lot of land. The many evaluation steps make the time required for 

cultivar development to be very long (Tenkouano et al. 1999).  

 

1.6.2 Achievements and improvement strategies 

To date, conventional banana crossbreeding has delivered a few improved cultivars to 

farmers from different breeding programs, but the rate is too low to cope with the demand. 

For example, the FHIA breeding program released some hybrids that have been widely 

distributed due to their high yield and resistance to Fusarium wilt, EMBRAPA in Brazil 

released some Pome and Silk hybrids resistant to Fusarium wilt and some are currently 

being tested in East Africa. The IITA-NARO breeding program has also released a few 

cooking banana hybrids and about 26 more hybrids (NARITA) are still under regional 

evaluation (Tushemereirwe et al. 2015). Methods that can increase seed set and 

germination, and speed up the selection process are required to improve the breeding 

efficiency in banana.  

 

To increase selection speed in conventional breeding, the genetic breeding values of 

parents should be known so that target crosses are made. A reliable and cost-effective 

selection system should be used to select the best hybrids with targeted traits prior to field 

evaluation. Marker assisted selection, MAS (Choudhary et al. 2008) is one way to 

improve conventional breeding efficiency.  Reports on the use of MAS in banana 

breeding are limited because of two major challenges: (1) many traits, especially those of 

agronomic and economic importance may be controlled by many quantitative trait loci 

(QTL), each having a small effect on the phenotype (Asíns 2002; Collard et al. 2005; 

Choudhary et al. 2008), and (2) the difficulty to identify all markers across the entire 

genome that are linked to QTL (Guo et al. 2011) due to the cost, labour involved in marker 
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assays and complexity of polyploid genomes. Details on these issues and how markers 

have been used in banana research are discussed in the next section.  

 

In Uganda, the IITA-NARO collaboration is focused on improving the EAHB that are 

susceptible to both biotic and abiotic stress (Lorenzen et al. 2010). The choice of breeding 

parents currently used was based mostly on field and screen-house phenotypic 

characterization of available germplasm to identify sources of host plant resistance in 

diploids and female fertility within the different clone sets of the EAHB (Ssebuliba et al. 

2005, 2006; Karamura 1998). Since then, several hybrids have been generated from 

crosses involving Calcutta 4 (wild diploid), improved parthenocarpic diploids, EAHB and 

tetraploids with EAHB background. Due to partial sterility, polyploidy and the low 

percentage of germinating embryos in tissue culture, few segregating populations have 

been generated from a single set of parents to allow molecular characterization and 

mapping of all important traits (Mbanjo et al. 2012a; Pillay et al. 2012; Xu 2010), but 

efforts are being made to generate more mapping populations. However, many hybrids 

with related background are generated that can constitute a training population for 

genomic predictions. 

 

Application of molecular markers to assess breeding progress is still limited in the 

program although simple sequence repeat markers are used in genotyping. The new 

developments in genotyping such as genotyping by sequencing (Elshire et al. 2011) and 

MAS such as genomic selection (GS) (Meuwissen et al. 2001), should be explored to 

reduce selection cycle and increase product output in a cost-effective way. This Thesis 

therefore focuses on the development and evaluation of genomic prediction models based 

on SNP markers derived from genotyping by sequencing approach and phenotypic data 

from related hybrids of mixed ploidy levels and their parents as a training population. The 
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training population was chosen to mirror the breeder’s population so that inferences can 

easily be made as opposed to the classic bi-parental diploid mapping populations 

commonly used in QTL analysis (Heffner 2009). The population consisting of 307 

genotypes was phenotyped under low input and high input field management conditions 

for two crop cycles. Results of experiments are summarized in publications under section 

six. It is expected that the information provided in this Thesis will be useful in improving 

the efficiency of banana breeding. 
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2 Role of molecular markers in banana research 

2.1 General overview 

Cultivated bananas are susceptible to pests, pathogens and environmental stresses, 

causing yield reduction that leads to food insecurity (Stover 1962; Ploetz 2000; Gold et 

al. 2004; Biruma et al. 2007; Tenkouano et al. 2012; Tripathi et al. 2015). Whereas 

chemical intervention is possible to some extent, it is not a sustainable solution, given the 

risk of environmental pollution and the economic burden on small-scale farmers. Thus, 

breeding for resistant banana cultivars is the most sustainable solution (Rowe and Rosales 

1993).  

 

Molecular markers play a significant role in identification of genomic loci controlling 

important traits in plant breeding. Markers that are linked to traits of interest are 

determined by linkage and association analysis. Estimation of genetic diversity facilitates 

gene introgression by choosing parents that are likely to give better genetic gain. The 

introgression process is quickened by marker assisted selection. Markers are also helping 

in taxonomic validation, cultivar identification, and characterization of evolutionary and 

speciation events. Molecular markers reduce the selection cycle in conventional cross 

breeding as compared to the classic phenotypic selection (Fig 6). The use of molecular 

markers shows promise in improving the efficiency of plant breeding (Ortiz and Swennen 

2014), but in banana breeding programs, their utility is currently limited.  

 

The release and improvement of a draft genomic sequence of the double haploid M. 

acuminata cv. Pahang, A genome (D'Hont et al. 2012; Martin et al. 2016) and a draft 

sequence of M. balbisiana cv. ‘Pisang Klutuk Wulung’, B genome (Davey et al. 2013) 

made a significant contribution to marker development in banana. Numerous gene 
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transcript data consisting of 46,665 expressed sequence tags (EST) and 35,752 annotated 

genes associated with M. acuminata and M. balbisiana are publicly available (Li et al. 

2013; Wang et al. 2012a; https://www.ncbi.nlm.nih.gov/gquery/?term=Musa [retrieved 

on 14 August 2017]). Several papers have reported on the utility of molecular markers in 

banana research and these are summarized in Table 1.  

Fig 6: Approaches to hybrid selection in banana breeding program. (A) the classical phenotypic 

selection of banana hybrids and (B) integrated genomic selection and phenotypic selection approach being 

investigated. 

https://www.ncbi.nlm.nih.gov/gquery/?term=Musa
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Table 1. Summary of molecular markers that have been used in banana research. 

Marker application Marker type Reference 

Molecular systematics  Isozymes, SSR, 

DArT, RFLP, ETS 

and ITS 

Simmonds (1966); Bhat et al. (1992); 

Janssen and Bremer (2004); Kress and 

Specht (2005, 2006); Boonruangrod et 

al. (2009); Perrier et al. (2011); 

Hřibová et al. (2011); Christelová et 

al. (2011b); Čížková et al. (2015)  

Genetic diversity studies 

 

 

 

 

 

 

Isozymes, RAPD, 

SSR, AFLP, RFLP, 

SRAP, DArT and 

MSAP 

Bhat et al. (1992); Jarret et al. (1993); 

Bhat et al. (1995); Kaemmer et al. 

(1997); Tenkuoano et al. (1999); 

Crouch et al. (1999); Crouch et al. 

(2000); Pillay et al. (2001); Ude et al. 

(2002); Ude et al. (2003); Creste et al. 

(2004); Noyer et al. (2005); Wang et 

al. (2007); Risterucci et al. (2009); 

Opara et al. (2010); Onyango et al. 

(2010); Wei et al. (2011); Nyine and 

Pillay (2011); Valdez-Ojeda et al. 

(2014); Kitavi et al. (2016); Karamura 

et al. (2016); Christelová et al. (2017) 

Detection of mutant 

clones 

RAPD Newbury et al. (2000); Martin et al. 

(2006)  

Genome characterization  RAPD, RFLP, ITS, 

dCAPS, IRAP and 

SCAR 

Pillay et al. (2000); Nwakanma et al. 

(2003); Nair et al. (2005); de Jesus et 

al. (2013); Noumbissié et al. (2016); 

Mabonga and Pillay (2017) 

Cultivar identification 

and pedigree tracking 

Isozymes, RFLP, 

SSR, RAPD, EST-

SSR and ISSR  

Horry (1988); Howell et al. (2004); 

Raboin et al. (2005); Venkatachalam 

et al. (2008); Horry (2011); Hippolyte 

et al. (2012); Mbanjo et al. (2012a) 

Linkage analysis  Isozyme, RAPD, 

RFLP, AFLP, SSR 

AS-PCR and DArT  

Fauré et al. (1993); Hippolyte et al. 

(2010); Mbanjo et al. (2012b)  
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Genome-wide 

association studies and 

marker-assisted selection 

Isozymes, dCAPS 

and SNP 

Umber et al. (2016); Noumbissié et al. 

(2016) Sardos et al. (2016); 

AFLP – amplified fragment length polymorphism, AS-PCR – allele specific-polymerase chain reaction, 

DArT – diversity array technology, dCAPS – derived cleaved amplified polymorphic sequences, EST – 

expressed sequence tags, ETS – external transcribed spacer, MSAP – methylation-sensitive amplified 

polymorphism, IRAP – inter retrotransposon amplified polymorphism, , ISSR – inter simple sequence 

repeats, ITS – internal transcribed spacer, RAPD – randomly amplified polymorphic DNA, RFLP – 

restriction fragment length polymorphism, SCAR – Sequence characterized amplified region, SNP – single 

nucleotide polymorphism, SRAP – sequence-related amplified polymorphism, SSR – simple sequence 

repeats 

 

2.2 Gene markers  

Useful markers for molecular breeding are those that are tagged to genes having 

significant contribution to traits of interest (Collard et al. 2008). When a gene and a 

marker are in linkage disequilibrium, it allows for the screening of plant germplasm, or 

hybrid lines at the earliest stages of plant improvement. The association of these markers 

with important traits can be identified through classical linkage analysis, genome-wide 

association studies, or candidate gene approaches. For example, Miller et al. (2008) 

identified 50 distinct nucleotide binding site leucine rich repeats (NBS-LRR) linked to 

resistance gene analogs in cv. ‘Calcutta 4’. Based on these findings, Emediato et al. 

(2009) were able to design degenerate primers that could amplify sequence analogs for 

resistance genes to black leaf streak disease in M. acuminata cv. ‘Calcutta 4’ (resistant) 

and M. acuminata cv. ‘Pisang Berlin’ (susceptible). 

 

Similarly, Wang et al. (2012b) identified randomly amplified polymorphic DNA (RAPD) 

markers that could distinguish between cultivars resistant and susceptible to Foc TR4 

using pooled DNA from resistant and susceptible cultivars. Two RAPD markers were 
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converted to sequence characterized amplified regions (SCAR) markers, which could be 

amplified in Foc TR4-resistant banana genotypes, but not in the susceptible genotypes. 

This work continues at the National banana program in Brazil (EMBRAPA) and shows a 

great promise in providing an early screen for resistance to Foc TR4 (Silva et al. 2016). 

  

M. balbisiana (B genome) is a good source of resistance, or tolerance to biotic and abiotic 

stresses (Vanhove et al. 2012; Ravi et al. 2013). However, it harbors endogenous banana 

streak virus (eBSV), which is activated when plants are stressed, or upon hybridization 

(Harper et al. 1999; Lheureux et al. 2003). This causes the limited use of any B genome 

containing accession in banana breeding. Lheureux et al. (2003) mapped the eBSV-

expressed locus on a linkage group using amplified fragment length polymorphism 

(AFLP) markers. In a different study, Noumbissié et al. (2016) used simple sequence 

repeat (SSR) markers and eBSV-specific PCR markers to identify hybrids containing the 

B genome that were free of eBSV. These hybrids resulted from crossing a tetraploid 

accession (AABB) with a diploid accession (AA). They found that chromosome 

translocation and recombination had produced 24 offspring (13% of the population) that 

did not contain eBSV. Using derived cleaved amplified polymorphic sequences (dCAPS), 

Umber et al. (2016) identified the existence of infectious and non-infectious BSV alleles. 

By chromosome doubling a haploid plant with B genome (homozygosity checked using 

SSR markers), they produced lines, which were free of the infectious BSV alleles. The 

two studies give a hope for the possibility of using diagnostic markers and producing 

eBSV-free B genome hybrids that could be useful in banana breeding. 
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2.3 Linkage and association mapping 

Linkage and association mapping are the basis of MAS in plant breeding, but have not 

gained significant practical application in banana breeding. This could be attributed in 

part to limitations inherent with the marker technologies themselves (Foolad 2007; Pillay 

et al. 2012), polyploid nature of banana, and the difficulty in developing and maintaining 

banana genetic mapping populations. Earlier attempts in linkage and association mapping 

used F1 and F2 diploid populations, which limited the resolution and accuracy of mapping 

quantitative trait loci (QTL) affecting important traits (Asíns 2002). Efforts should be 

made to develop double haploid populations, or recombinant inbred lines to facilitate 

QTL mapping in banana (Pollard 2012).  

 

Genetic linkage maps are useful in gene identification and understanding the inheritance 

pattern of traits (Korte and Farlow 2013). Linkage maps are derived from genotyping bi-

parental segregating populations. An important prerequisite is that the two parents from 

which the segregating population is derived are significantly different in the trait of 

interest. Moreover, the markers used to genotype the population should show the 

segregation and population structure, and should be distributed on all chromosomes. 

Proper and accurate collection of phenotype data is critical if linkage maps are to be of 

any value. To avoid bias in phenotyping, data from multiple years and locations should 

be collected.  

 

To date, a limited number of Musa genetic linkage maps have been reported (Table 2). 

This is because cultivated bananas are mostly triploid and partially, or completely sterile 

(Ssebuliba et al. 2006), which makes it difficult to generate adequate study populations. 

Indeed, often they lack genetic variability for the most important traits, which hinders 
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construction of genetic linkage maps. All genetic linkage maps reported so far are from 

diploid segregating population.  

 

Table 2: Summary of banana genetic linkage maps currently publicly accessible  

Reference Popn type Popn 

size 

No. of 

markers 

Linkage 

groups 

Type of 

markers 

Segregation 

distortion 

(%) 

Fauré et al. 

(1993) 

F2 (SF265 × 

banksii) 

92 77 15 RFLP, 

isozyme 

and 

RAPD 

36 

Hippolyte et 

al. (2010) 

F1 (Borneo 

× P. Lilin) 

180 489 11 SSR and 

DArTs 

22 

Mbanjo et 

al. (2012) 

F1 (half-sib, 

6142-1 × 

8075-7 and 

6142-1-S × 

8075-7) 

139 316 15 SSR, 

DArTs 

and AS-

PCRs 

41 

 

The first genetic mapping population (Fauré et al. 1993) consisted of an F2 population of 

92 individuals derived from selfing an F1 hybrid (SFB5) that resulted from a cross 

between SF265 and M. acuminata ssp. banksii. Seventy-seven loci consisting of RAPDs, 

Isozymes and RFLPs were placed on 15 linkage groups and covered 606 cM.  Segregation 

distortion was 36% of the mapped loci and was biased towards M. acuminata ssp. banksii. 

Hippolyte et al. (2010) published the most saturated map to date using an F1 diploid (AA) 

population created from a cross between M. acuminata cv. Borneo and M. acuminata cv. 

‘Pisang Lilin’. The map was constructed using 489 markers (including, SSR and diversity 

array technology, DArT) distributed across 11 linkage groups and covering 1197 cM. The 

segregation distortion of alleles was 22%. The most recent genetic linkage map is that of 

Mbanjo et al. (2012b). They used an F1 population consisting of two half sibs derived 
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from crosses between M. acuminata hybrids and these were 6142-1 × 8075-7 and 6142-

1-S × 8075-7. Two maternal (6142-1 and 6142-1-S) and one paternal (8075-7) maps were 

generated using DArT, SSR and AS-PCR markers. The most inclusive map was the 

paternal map with 316 markers that were distributed on 15 linkage groups covering 1004 

cM. However, 41% of the allele loci showed segregation distortion. 

 

Association mapping (genome-wide association study, GWAS) offers the opportunity to 

link genetic markers and their location on genetic maps to phenotypic differences (Korte 

and Farlow 2013). The advantage of GWAS is the non-reliance on bi-parental populations 

and the ability to capture both recent and historical recombination events (Borevitz and 

Nordborg 2003; Korte and Farlow 2013). Whereas linkage mapping requires recombinant 

inbred lines to achieve a good resolution, GWAS utilizes a panel of genotypes from 

unrelated population, or a population with known genetic substructure to identify 

associations between molecular markers that are in linkage disequilibrium with genetic 

loci affecting phenotypes.  

 

Genome-wide molecular markers such as SNP are preferred for GWAS. For example, 

Sardos et al. (2016) performed GWAS for parthenocarpy in banana. A panel of 104 

diploid (AA) accessions was genotyped by sequencing (GBS) and 5,544 SNP markers 

were derived. The SNP markers were associated with the publicly available phenotypic 

data on parthenocarpy. Thirteen genomic loci were identified to be associated with 

parthenocarpy and female sterility. The genes identified in these regions were mostly 

related to growth regulators such as auxin, gibberellin and abscisic acid, whereas the 

others were involved in gametophyte development and one histidine kinase implicated in 

female sterility. Such studies need to be extended to other traits using more objective and 

empirical phenotypic data. 
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In GWAS, the effect of each marker on the trait is estimated and markers with the smallest 

probability values (P-values) are considered to have a strong significant association with 

the trait (Korte and Farlow 2013). In order to limit the number of false associations 

between markers and traits, a Bonferroni correction is used. For example, if the 

confidence level is set at 95%, Bonferroni correction = 0.05 divided by the number of 

SNP markers analyzed. GWAS results are presented on Manhattan plots generated by 

qqman-package in R (R core team, 2017), or in trait analysis by association, evolution 

and linkage (TASSEL) pipeline. The Bonferroni correction line on a Manhattan plot is 

placed at -log10 × Bonferroni correction value (Fig 7). All markers that are above the 

Bonferroni correction line are considered to be significantly associated with the trait.   

 

Fig 7. Manhattan plot generated in R using qqman package showing the Bonferroni correction line 

(red) and the location of markers associated with the trait under study. 

 

2.4 Genetic diversity studies 

Genetic diversity is indispensable in breeding and is perhaps the single most limiting 

factor to plant improvement. It is upon which breeders base their decisions to choose the 

parents to cross. Conventionally, phenotypic, or morphological characters associated with 

vegetative and floral structures of banana have long been used to estimate diversity and 
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distinguish among cultivars (Karamura 1998). However, phenotypic characteristics are 

greatly influenced by genotype, environment and the interaction between genotype and 

environment (Batte et al. 2017). This limits the genetic gain achieved from crossbreeding 

when parents are chosen on the basis of morphological characteristics. Molecular markers 

have been used to supplement this effort and expand germplasm diversity analysis among 

various collections and representative populations displaying regional variation. A variety 

of molecular markers has been used in banana genetic diversity studies and they included 

isozymes, RAPD, AFLP, SRAP, RFLP DArT, MSAP and SSR (Table 1). 

 

Results from different banana genetic diversity studies cannot be compared. Each study 

is unique in terms of population composition, type and number of markers used. However, 

the general consensus is that molecular diversity does not correlate well with phenotypic 

diversity (Crouch et al. 2000; Kitavi et al. 2016). The genetic variation explaining the 

substantial morphological variation among regional Musa landraces is still lacking 

despite the availability of numerous molecular markers. EAHB have been classified into 

five clone sets based on phenotypic characteristics (Karamura 1998). This grouping has 

not been supported by any of the molecular studies (Pillay et al. 2001; Kitavi et al. 2016; 

Karamura et al. 2016a). Hence, EAHB are considered to be a product of single 

hybridization event and the morphological differences observed are most probably a 

result of several somatic mutations, and selection events that led to many distinct cultivars 

(Kitavi et al. 2016).  

 

Markers can also be used to identify variation from sources where it has not been 

previously reported. In plantain landraces of West Africa, RAPD, SSR and AFLP markers 

showed very low polymorphisms (Crouch et al. 2000; Noyer et al. 2005). However, HpaII 

and MspI, MSAP profiles revealed three clusters that were not correlated with 
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morphological differences in plantains (Noyer et al. 2005) and a subset of plantains from 

Cameroon was genetically distinct from others (Ude et al. 2003).  

 

Somaclonal mutation resulting from prolonged sub-culturing of plants in tissue culture 

and chimerism create diversity within cultivars. Molecular markers have been used to 

detect such variation. For example, Martin et al. (2006) were able to differentiate 

somaclonal mutant named CUDBT-B1 from the parent clone cv. ‘Grand Naine’ using 

RAPD marker S-20 (5’-GGACCCTTAC-3’). The marker produced a unique 1650 bp 

band only in mutants. In plantains, analysis of 48 clones derived from a single meristem 

of cv. Agbagba using RAPD markers showed polymorphism within the clones. Field 

evaluation of these clones correlated well with their genetic clustering leading to a 

conclusion that cv. Agbagba comprised of periclinal chimera (Newbury et al. 2000).  

 

2.5 Genomic selection in banana  

QTL analysis is quite straightforward once one has a well-saturated linkage map and 

accurate phenotypic data. However, this applies to qualitative traits, or traits governed by 

few QTL with major genetic effects such as pest and disease resistance (Asíns 2002; 

Heffner et al. 2009). For highly quantitative traits such as yield, or drought stress, QTL 

mapping becomes powerless due to the presence of many loci contributing to the trait, 

each with small-explained variance (Asíns 2002; Collard and Mackill 2008). Even if these 

QTL could be identified, introgressing and selecting for them during breeding using MAS 

would be tedious. To overcome the above challenges, genomic selection (GS) that uses 

predictive models has been proposed with the prospect to reduce the selection cycle and 

increase genetic gain per unit time.  
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Genomic selection (GS) is a form of MAS that utilizes high-density molecular markers 

such as SNP to estimate the genomic breeding value of a genotype using a statistical 

model (Meuwissen et al. 2001). The approach used to perform genomic selection is called 

genomic prediction while the unit of selection is called the genomic estimated breeding 

value (GEBV). In this approach, identification of individual QTL associated with a trait 

of interest is not necessary because QTL are assumed to be in linkage disequilibrium with 

at least one, or more SNP (Desta and Ortiz 2014). Since generation of marker data is 

increasingly becoming cheaper than phenotyping, it is expected that GS will reduce 

breeding costs, increase selection intensity and accelerate breeding efficiency.  It is a well-

established technique in animal breeding (Hayes and Goddard 2010) and it is gaining 

popularity among plant breeders (Crossa et al. 2010; Lorenz et al. 2011; Ceballos et al. 

2015; Crossa et al. 2016) with several publications in cereal breeding and fruit trees. GS 

has not been applied in bananas yet, but it is currently being investigated. More details on 

genomic selection are given in section three.  

 

2.6 Characterizing evolutionary and speciation events 

Identifying and utilizing progenitors of modern banana cultivars in breeding schemes 

provides potential sources of improved quality traits associated with important 

commercial cultivars. This provides bridges for gene transfer of traits such as host plant 

resistance to pathogens and pests as well as drought tolerance from wild relatives. 

Understanding how these modern cultivars arose may allow us to reconstruct them while 

also including source of resistance to major abiotic and biotic sources of stress (Perrier et 

al. 2011). Therefore, proper identification and classification of bananas both at 

morphological and more importantly at molecular level is very necessary. 
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Several studies have utilized isozymes, SSR, DArT, chloroplast (and mitochondria) DNA 

RFLP, 5´ external transcribed spacer rDNA (5´ETS rDNA) sequence information and 

various cytological techniques to elucidate the domestication pathways of bananas 

(Boonruangrod et al. 2009; Perrier et al. 2011). For example, through molecular analysis, 

the EAHB have been shown to be a product of three subspecies of M. acuminata (M. a. 

ssp. banksii, M. a. ssp. zebrina and M. a. ssp. malaccensis) while M. balbisiana and M. 

a. ssp. banksii are the founders of plantains (Boonruangrod et al. 2009; Perrier et al. 

2011).  

 

The family Musaceae consists of domesticated edible and ornamental species, and their 

wild relatives. The Musaceae family consists of three genera including, Ensete, Musa and 

Musella (Janssens et al. 2016). Different classification systems in banana have been 

reported including molecular phylogeny. Isozymes such as esterase, acid phosphatase and 

catalase were used in the earlier classification of bananas (Simmonds 1966; Bhat et al. 

1992). Christelová et al. (2011a, 2017) used 19 informative SSR markers to discriminate 

different levels of classification of Musa accession held at the International Musa 

Germplasm Transit Centre (ITC), Belgium.  

 

Internal transcribed spacers (ITS) of rDNA show genetic variation despite the 

evolutionary conservation of rRNA genes. This variation was used to assess the structure 

and genetic diversity of Musaceae family. Analysis of ITS1 and ITS2 sequences revealed 

that section Callimusa and Australimusa were in the same clade while Eumusa and 

Rhodochlamys formed the second clade of genus Musa (Hřibová et al. 2011). Results 

from intronic sequence analysis of single copy genes from Musa accessions supported the 

merger of Callimusa with Australimusa and Eumusa with Rhodochlamys however, the 

old classification is still widely used. Recent findings by Janssens et al. (2016) based on 
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the analysis of four gene markers (rps16, atpB-rbcL, trnL-F and ITS) using Bayesian 

inference methods, gave further support for the merger of Callimusa, Astralimusa and 

Ingentimusa into one clade while Eumusa and Rhodochlamys formed the second clade.  

In addition, the divergence time of Musaceae family and evolution of genus Musa were 

estimated to be 69 Mya and 51 Mya, respectively (Christelová et al. 2011b). These studies 

were expanded by using cytogenetics, ITS and SSR markers (Čížková et al. 2015). 

However, discrepancies in estimates of divergence time of Musaceae family and 

speciation of Musa are noted in various publication depending on the analysis method 

used (Janssen and Bremer 2004; Kress & Specht 2005, 2006; Janssens et al. 2016). 

 

2.7 Genome characterization, cultivar identification and pedigree tracking 

Four types of genomes are present in banana and these include A, B, S and T representing 

M. acuminata, M. balbisiana, M. schizocarpa and M. textilis, respectively (Swennen and 

Vuylsteke, 2001). Many cultivated bananas consist of one, or a combination of two 

genomes. The most common genomes within the edible bananas are the A and B 

genomes. Markers specific to these genomes allow determination of genomic 

composition of allopolyploids and track recombination event between genomes in hybrid 

progeny. For example, three RAPD Operon primers A17, A18 and D10 were used to 

distinguish between A and B genome composition in 40 banana accessions (Pillay et al. 

2000), thus providing a quick means of genome characterization. Nwakanma et al. (2003) 

used PCR-RFLP on ribosomal DNA internal transcribed spacer (ITS) and identified 

markers that were specific for A and B genomes in bananas. Restriction digest of ITS-

PCR products revealed a 530 bp fragment that was specific to A genome and two 

fragments of 350 bp and 180 bp that were specific to B genome and their intensity 

increased with increasing number of copies of B genomes in the accessions. 
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de Jesus et al. (2013) used a combination of flow cytometry, PCR-RFLP based on ITS 

amplification products and SSR markers and confirmed the genomic constitution of 

94.6% of the total accessions maintained at the EMBRAPA ex situ collection. Their 

results supported the hypothesis of homeologue recombination between A and B 

genomes. One inter-retrotransposon amplified polymorphism (IRAP) marker designed 

from a long terminal repeat (LTR) of Musa Ty3- gypsy-like retroelement (M. acuminata 

Monkey retrotransposon, AF 143332) was identified to be specific for the B genome in 

bananas. The marker was used to classify the AAB and ABB cultivars in South India and 

clarified the genome composition of some cultivars that had been misidentified (Nair et 

al. 2005). Howell et al. (2004) developed nine RAPD primers that distinguished banana 

accessions from ITC based on genome composition and ploidy level following cluster 

analysis and these improved the precision of Musa identification and classification.  

Mabonga and Pillay (2017), reported a SCAR marker developed from a RAPD amplicon 

that produced 500 bp and 700 bp fragments in A and B genomes, respectively. They 

concluded that the two genomes may not be fully differentiated as previously reported. 

 

Germplasm collection centres and breeding programs maintain records of accessions and 

crosses made, but mistakes arise due to human error either during in vitro sub-culturing, 

or field planting. Molecular markers have proven to be useful in cultivar identification 

and pedigree tracking. For example, cv. Cavendish and cv. ‘Gros Michel’ are popular 

dessert bananas that arose from 2n restitution and n gamete donors. RFLP markers 

showed that the 2n donors could have been cvs. Samba, Chicame, or ‘Akondro Mainty’ 

because they shared almost the full allele profiles (Raboin et al. 2005). Cv. ‘Akondro 

Mainty’ was highly linked to cv. Cavendish based on isozyme, ribosomal gene spacer 

patterns and anthocyanin markers (Horry 1988; Horry 2011), whereas cv. Chicame could 

have contributed the 2n gametes to cv. ‘Gros Michel’. However, it was not possible to 
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identify a single n gamete donor that crossed with 2n gamete donor to produce the triploid 

cultivars, but putative candidates were cvs. Sa and ‘Khai Nai On’. Similar observation 

was made when a set of 22 SSR markers was used to analyze 561 Musa accessions 

(Hippolyte et al. 2012). SSR-based platform for clarifying identity and integrity of 

accessions conserved by the International Musa Germplasm Transit Centre (ITC) was 

established. Several accessions have been proven to be true to type while others were 

misidentified based on SSR and cytological results (Christelová et al. 2011a; Christelová 

et al. 2017).   

 

Expressed sequence tags-SSR (EST-SSR) markers were used to clarify the genotype 

identity in a diploid segregating population from hybrid 6142-1 and 8075-7. The analysis 

revealed two half-sib populations instead of a single full-sib population (Mbanjo et al. 

2012a). Venkatachalam et al. (2008) used a combination of RAPD and inter simple 

sequence repeat (ISSR) markers to identify and classify the South Indian cultivars. The 

authors were able to separate global cultivars such as cvs. Williams and Robusta from 

those that had limited geographical distribution and purely endemic to South India.  
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3 Genomic prediction 

3.1 Overview of genomic selection 

Clarification on usage of terms: Genomic selection is a method of making a decision on 

which individuals to choose from a population and advance in the breeding process based 

on the differences in their genomic merit (value). Genomic prediction is a statistical 

model based tool that utilizes genomic data to estimate the genomic merit of an individual 

in a population. Therefore, genomic prediction is a means to genomic selection and the 

output of genomic prediction that facilitates genomic selection decision is called the 

genomic estimated breeding value (GEBV).  

 

Genomic selection (GS) based on genomic prediction models is a form of marker assisted 

selection (MAS), which allows selection of individuals that have not been phenotyped 

(Goddard and Hayes 2007; Goddard 2009). It utilizes dense markers that are spread across 

the genome to predict the genomic breeding value of an individual (Meuwissen et al. 

2001; Heffner et al. 2009). As the predictions are based on genomic information, the 

selection index is called genomic estimated breeding value (GEBV). Genomic selection 

addresses some limitations of classical MAS and GWAS by simultaneously estimating 

all marker effects on the trait. Hence, it is suitable for prediction of polygenic traits 

controlled by many small-effect QTL without a need to identify individual QTL (Heffner 

et al. 2009) and the associated markers.  

 

Genomic prediction is mostly used for selection of parents for further crossing (Goddard 

and Hayes 2007). However, Crossa et al. (2014) proposed that genotypic values should 

also be used to select genotypes with potential for release as new cultivars in maize and 

wheat breeding. Several modifications to the original genomic selection methodology of 
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Meuwissen et al. (2001) have been proposed and these include: weighted genomic 

selection, optimal haploid value selection, genotype building selection and optimal 

population value selection (Goiffon et al. 2017).  

 

Genomic selection has been made possible by high-throughput next generation 

sequencing technologies that caused a dropdown in genotyping costs and by advances in 

genotyping methods (Elshire et al. 2011; Deschamps et al. 2012). When dense markers 

became available through approaches like genotyping by sequencing (Elshire et al. 2011; 

Poland et al. 2012a), most linear regression models could not handle data where the 

number of phenotypes, or sample size (n) were less than the number of predictors, or 

markers (p) (Jannink et al. 2010; de los Campos et al. 2013). To address the issue of small 

‘n’ and large ‘p’, Bayesian and kernel methods were developed alongside many other 

approaches (de los Campos et al. 2009a; Pérez and de los Campos 2014). The Bayesian 

methods use the Monte Carlo Markov Chain (MCMC) algorithms to sample from a 

posterior probability distribution (Meuwissen et al. 2001). The posterior distribution of 

estimates is generated from prior probabilities, which are user defined. 

 

Prior probabilities are very subjective, but can be derived from historical information 

(Goldstein 2006), like, if one knows the heritability of a trait, or the number of genes 

controlling the trait. When only prior densities are used, then a non-informative model is 

generated. The priors are updated when data become available to yield a more realistic 

posterior probability distribution (Goldstein 2006). Hence, when a lot of data are 

available, the influence of prior probability on the posterior probability distribution is 

superseded by the likelihood of the data.  
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The MCMC algorithms use the Gibbs sampler (Gelfand et al. 1990) and every time a 

sample is obtained the model is updated (Meuwissen et al. 2001). The number of 

iterations that the MCMC must run are pre-set. The user also defines how many iterations 

should be discarded as burn-in so that the Gibbs sampler does not pick samples from 

initial values that can bias the mean of estimates. After the burn-in, the interval at which 

the sampler should collect the samples to update the model is also defined, which is 

referred to as thin (MacEachern and Berliner 1994). Thinning reduces sample 

autocorrelation of the Markov chain, which can cause biased Monte Carlo standard errors. 

It also allows efficient use of computer storage space by reducing the number of posterior 

samples kept. This means that any number of predictors can be fitted in the model, thus 

enabling whole-genome regression and prediction (de los Campos et al. 2013). While 

whole-genome regression is possible, the large amount of data from GBS can still create 

computational challenges. These have been partly addressed by Bayesian methods that 

perform variable shrinkage and selection of the linear predictors (de los Campos et al. 

2013; Pérez and de Los Campos 2014). 

 

Genomic selection has been successful in dairy cattle for selection of bulls that give 

female offspring with high milk production (Goddard and Hayes 2007). Traditionally, 

selection of bulls for milk production depended on the performance of their daughters, 

which could make the selection cycle very long. In plants, traits such as yield, sensory 

quality and postharvest qualities can only be determined after harvest, which also 

increases the selection cycle. The primary advantage of GS is the ability to reduce 

selection cycle and increase selection intensity that results in faster genetic gain per unit 

time and cost. Genetic gain (G) can be estimated as the product of selection intensity (i), 

prediction accuracy (r) and square root of additive genetic variance (√ẟ2
A) divided by 

selection cycle time (t). Prediction accuracy is influenced by phenotypic variance (ẟp), 
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which is also influenced by the correlation between the breeder’s and farmer’s 

environment while additive genetic variance is influenced by the heritability of the trait. 

In practice, the breeder can increase genetic gain by increasing the selection intensity (i) 

and by reducing the selection cycle time (t) even when the prediction accuracy is low 

compared to phenotypic selection accuracy (Desta and Ortiz 2014; Bassi et al. 2016).  

 

The predictive abilities of different genomic prediction models have been demonstrated 

in various crops ranging from cereals to forest trees (Crossa et al. 2010; Heffner et al. 

2011; de Oliveira et al. 2012; Kumar et al. 2012; Würschum et al. 2013; Beaulieu et al. 

2014; Crossa et al. 2014; Crossa et al. 2016; Onogi et al. 2016; Gezan et al. 2017). 

However, information concerning use, or performance of genomic prediction models in 

banana breeding is not available to date. This section of PhD Thesis divulges more of the 

main developments in the field of genomic predictions to date starting from genotyping 

by sequencing, then predictive models and computational requirements while putting 

banana breeding into perspective.   

 

3.2 Genotyping by sequencing: a step towards genomic prediction 

Genotyping by sequencing (GBS) is a next generation sequencing-based method that 

takes advantage of reduced representation libraries to enable high throughput genotyping 

of large numbers of individuals at a large number of SNP loci (Glaubitz et al. 2014). 

Advances in sequencing technologies led to reduction in genotyping costs, which caused 

a rapid growth of sequence databases (Bernardo and Yu 2007). Of all marker types, SNP 

markers are the most abundant in the genomes of animal and plant species. This makes 

them the molecular markers of choice for genomic predictions as they satisfy the 

requirement of dense markers (Bernardo and Yu 2007; Elshire et al. 2011).  
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To reduce the cost of SNP genotyping without compromising quality, several reduced 

representation sequencing approaches were developed (Sonah et al. 2013).  These include 

diversity array technology sequencing (DArTseq), restriction site associated DNA (RAD, 

Baird et al. 2008), genotyping by sequencing (GBS) and reduced representation library 

(RRL), or complexity reduction of polymorphic sequences (CRoPS) (van Orsouw et al. 

2007; Elshire et al. 2011; Beissinger et al. 2013). Of the four, GBS is a low coverage 

approach, but by far the most advantageous when genotyping large populations. Library 

construction for GBS is simple and it requires small amounts of starting DNA. The 

introduction of a barcoding system to samples allows several samples to be multiplexed 

and sequenced on the same sequencing lane, which reduces the sequencing cost per 

sample. When a proper choice of restriction enzyme is made, high SNP coverage in gene-

rich regions of the genome can be attained in a highly cost-effective manner (Elshire et 

al. 2011; Sonah et al. 2013). The choice of restriction enzymes for GBS library 

preparation depends on the number of tags it can generate and the distribution of tags 

across the genome (Hamblin and Rabbi, 2014). The fewer the tags, the more reads per tag 

and the better the depth of coverage. However, the tags should be uniformly distributed 

across the entire genome to get good genomic representation markers. Use of restriction 

endonuclease ApeKI was demonstrated to give good depth of coverage in barley and 

maize (Elshire et al. 2011).  

 

To improve the robustness of the GBS protocol, Poland et al. (2012a) modified the 

original GBS protocol by using a two-enzyme approach (PstI/MspI), a rare cutter and a 

frequent cutter. This approach was used to genotype bi-parental barley and wheat 

populations and was used to develop a genetically anchored reference map to identify 

SNP and tags (Poland et al. 2012a). Further studies in wheat were carried out to prove the 

robustness of GBS in breeding applications (Poland et al. 2012b). Sonah et al. (2013), 
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also improved the standard ApeKI protocol by carrying out a final amplification step with 

selective primers extending across the 3´-ApeKI sites by 1 or 2 bases into the insert. With 

this modification, both the number and depth of coverage of called SNPs were 

significantly improved. Using the PstI restriction enzyme alone with the standard GBS 

protocol was also found to give good sequence data. It is a relatively rare cutting enzyme, 

which generates a moderate number of tags, thus giving more reads with better depth of 

coverage. The tradeoff is that it gives a lower number of SNP markers (Hamblin And 

Rabbi, 2014). This is good for genotyping multi-ploidy populations (e.g. banana) that 

have varying number of alleles at any given locus. In cassava, a combination of PstI and 

TaqI improved the distribution and number of SNP markers (Hamblin and Rabbi, 2014). 

 

Sequence reads from mitochondria DNA (mDNA) and chloroplast DNA (cpDNA) 

present a problem when mapping reads to a reference genome especially in polyploid 

plants. For example, in heterozygous autotetraploid potato, cpDNA was shown to 

represent 60% of total reads (Uitdewilligen et al. 2013). However, in the M. a. ssp. 

malaccensis complete chloroplast DNA (cpDNA), only 14 PstI restriction sites were 

found whereas in the current publicly available banana reference genome (Martin et al. 

2016), there are 85714 restriction sites for PstI. This suggests that the number of tags 

from cpDNA in the sequence library are very few for banana, reducing a possible 

contamination of nuclear genome sequence reads with organellar DNA sequences even 

when CTAB DNA extraction protocol is used (Lutz et al. 2011).   

 

Genotyping by sequencing has also some limitations, the main ones being the high level 

of missing data (Glaubitz et al. 2014), low coverage and non-uniform distribution of 

sequence reads (Beissinger et al. 2013; Hamblin and Rabbi, 2014). The problem of 

missing data is usually overcome by imputation methods such as random forest 
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regression, multivariate normal expectation maximum algorithm and impute amongst 

other methods (Poland et al. 2012b). Proper choice of restriction enzyme during library 

construction and technical replication during sequencing can also help to improve 

coverage and reduce missing data.  

 

RAD sequencing in comparison to GBS offers ‘deep-sequencing’ of SNP with a wide 

range of coverage depending on the requirement of the researcher (Fonseca et al. 2016), 

while DArT sequencing provides data with a few missing data points both dominant and 

co-dominant markers (Sansaloni et al. 2011), but the two methods are not yet as cheap as 

GBS for genotyping large populations.  

 

3.3 Downstream analysis of GBS data 

GBS protocol generates millions of short sequences reads, on average 100 bp each using 

the Illumina sequencing platform. One main requirement for downstream analysis of 

sequence reads is a reference genome sequence, or DNA contigs from a representative 

species (Elshire et al. 2011; Perea et al. 2016). Tools such as Burrows-Wheeler alignment 

(Li and Durbin 2009) and Bowtie 2 (Langmead and Salzberg 3012) work on the principle 

of Burrows-Wheeler transform (BWT). They were designed to map short reads to the 

reference sequence in an efficient and accurate manner, but many other read alignment 

tools exist. Once the reads are aligned to the reference, SNP discovery and genotyping 

can be done by variant caller tools such as SAMtools, genome analysis toolkit (GATK), 

or FreeBayes (Clevenger et al. 2015). 

 

The choice of a variant caller depends on the nature of the species under study (Clevenger 

et al. 2015). Calling SNPs from diploid organisms is straight-forward and also many 
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polyploids with an even ploidy level behave like diploids. However, for autopolyploid 

species, special considerations must be made (Uitdewilligen et al. 2013). In 

allopolyploids such as wheat (T. aestivum) with three sub-genomes, it is possible to map 

reads to specific sub-genomes and call SNPs for each genome (Dvorak et al. 2006).  

Bananas are polyploid and some triploid bananas such as EAHB are composed of three 

A sub-genomes originating from different subspecies that are not easy to distinguish 

(Perrier et al. 2011). SNP calling from a banana population comprising individuals of 

different ploidy levels requires a careful choice of variant caller tools.  

 

Each variant caller has advantages and limitations. For example, SAMtools does not 

perform well in calling heterozygous SNP, despite being simple to use. In contrast, GATK 

has many steps and requires special data formats, but it is good for handling species with 

different ploidy levels and when allele dosage is required. It is also capable of 

distinguishing true SNP from sequence artifacts. The indel realignment step in GATK 

improves alignment around indels, which removes frameshifts that usually result in false-

positive SNP calls (Polyanovsky et al. 2011; Clevenger et al. 2015). 

 

Bioinformatics workflows and pipelines make SNP calling and genotyping from GBS 

reads more efficient. Currently, the bioinformatics pipeline that is commonly used is the 

TASSEL-GBS (Glaubitz et al. 2014). Other bioinformatics pipelines that have been 

developed include Stacks and next generation sequencing eclipse plugin, NGSEP 

(Catchen et al. 2011; Perea et al. 2016). They offer flexibility of handling large number 

of samples with reduced errors. The main characteristics of bioinformatics workflows and 

pipelines is that they combine the utility of several specific tools and allow the user to 

specify some parameters although default settings are always provided. Among such tools 

are the FASTX Toolkit and Picard Tools (http://hannonlab.cshl.edu/fastx_toolkit/; 

http://hannonlab.cshl.edu/fastx_toolkit/
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http://broadinstitute.github.io/picard/). Custom requirements are not easy to implement in 

standard pipelines and this may call for the user to develop a customized workflow to 

execute specific tasks. The output SNP can be used for GWAS, population structure 

analysis, genetic diversity studies and genomic predictions (Elshire et al. 2011). 

Depending on the final use of SNP data, some conversion tools may be required to change 

the genotype data formats so that the data are compatible with other software. This 

involves writing Perl scripts, or R functions. 

 

3.4 Genomic prediction models 

The basic model commonly used in simple experiments to predict dependent variable 

given the independent variable data, or vice versa, is the simple linear regression model, 

or the least squares estimation model given by the formula: y = α + βx + e, where y is a 

vector of dependent variables, α is the y intercept, β is the regression coefficient, x is a 

matrix of independent variable and e is the vector of random residuals. If there are many 

co-variate factors that influence the outcome variable, then the multiple linear regression 

model is adopted, which takes the form: y = α + β1x1 + β2x2 + …. βnxn + e. The utility of 

these models in genomic selection is limited due to the high number of linear predictors 

(Crossa et al. 2010). 

 

Animal breeders have for a long time relied on the use of phenotypic data and pedigree 

information to predict the breeding value of individuals (Goddard and Hayes 2007). Best 

linear unbiased prediction (BLUP) model has been used to estimate random effects 

(genetic merit). It is a linear model of the form: y = Xβ + Zu + e, where y is a vector of 

phenotypic observations, β and u are vectors of fixed and random effects, respectively, X 

and Z are design matrices, e is a vector of random residuals (Robinson, 1991). The advent 

http://broadinstitute.github.io/picard/
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of next generation sequencing technologies increased access to genotypic data. 

Integrating these data into prediction models showed an increase in genetic gain per unit 

time (Meuwissen et al. 2001; Goddard and Hayes 2007; Legarra et al. 2008; Hayes et al. 

2009).  

 

Meuwissen et al. (2001) incorporated SNP markers as random variables in BLUP 

equation in their simulation study. They made an assumption that marker effects were 

normally distributed and that all loci had equal variance, thus the genetic variance of an 

individual locus could be obtained by dividing the total genetic variance, Vg by the total 

number of loci, n (Vg/n). However, in some cases a few loci with major effects, or many 

loci with varying effects control the trait, and are not uniformly distributed across the 

genome. This makes the assumption of equal genetic variance unrealistic and leads to 

model over-parameterization (Resende et al. 2012). Parametric and semiparametric 

models based on Bayesian principles that perform shrinkage and variable selections were 

developed as alternatives for use in genomic prediction (de los Campos et al. 2013; Pérez 

and de Los Campos 2014). 

 

3.4.1 Implementation of genomic prediction 

Genomic prediction is implemented in three phases, which include training, validation 

and breeding (Jannink et al. 2010; Nakaya and Isobe 2012). In the training phase, a panel 

of genotypes representing the genetic diversity within a breeding program is phenotyped 

and genotyped. The marker variance and their effect on the trait (regression coefficient) 

at each locus are estimated and the population’s trait mean is obtained from the 

phenotypic data. This yields a model of the form “predicted phenotype (ŷ) = general 

phenotype-mean in the population (intercept, μ) + GEBV (⅀Xβ) + residual error (ℇ)”. 

This can be expressed as ŷ = μ + ⅀Xβ + ℇ, where X is a matrix of independent linear 
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predictors such as SNP markers and β is the regression coefficients of the independent 

linear predictors. The residual errors could be environmental or spatial errors. When ℇ is 

assumed to be random and normally distributed, that is, ℇ = ~N(0, ẟℇ
2), where ẟℇ

2 is the 

variance of random residuals, then GEBV = ŷ – μ (Pérez and de Los Campos 2014). 

 

The complexity of the above genomic prediction model can be increased by adding a 

relationship information. This information can be in the form of a genomic relationship 

matrix (G-matrix), or pedigree matrix (VanRaden 2008). The G-matrix (G) can be 

calculated from SNP data (X) consisting of score for minor alleles that take the form of 

0, 1 and 2 for diploid organisms, where 0 and 2 are homozygous major and minor allele 

states, respectively, while 1 represents the heterozygous state of a locus. Hence, G = XX´, 

where X´ is the transpose of X, which is a data frame of ‘n’ individuals and ‘p’ SNP 

markers.  

 

Pedigree matrix can be calculated when pedigree records are available using the 

pedigreemm R-package (Vazquez et al. 2010). The choice as to whether a pedigree matrix 

is added to the model, or not depends on the relationship of individuals in the GS 

population. When there is a weak relationship, addition of pedigree matrix distorts the 

relationship based on genomic data causing a reduction in performance of genomic 

prediction models (Zhong et al. 2009). However, in some cases a combination of pedigree 

information with marker data was shown to improve the prediction accuracy of genomic 

prediction models (Crossa et al. 2014).  

 

3.4.2 Estimate of model performance 

In genomic selection, predictive ability is a measure of performance of a genomic 

prediction model and is determined by cross validations. Predictive ability of a model is 
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the correlation between the predicted and observed value of a trait, or the correlation 

between GEBV and observed phenotype (Crossa et al. 2010). Usually, the correlation 

between GEBV and predicted phenotype is approximately 1.0. Most studies used five-

fold (K=5) and ten-fold (K=10) cross validation (Jannink et al. 2010). However, other 

strategies are also used. For example, 90 % of the genotypes are used as training set while 

10 % as cross validation (testing) set, but there are many other approaches (Crossa et al. 

2016). The average correlation of these cross validations is reported as the predictive 

ability, or prediction accuracy of that model for a trait (Crossa et al. 2014; Crossa et al. 

2016). It is important that during cross validation there is no overlap between genotypes 

in the training set and testing set.  

 

Cross validation is a convenient way of evaluating the accuracy of genomic prediction 

models. In order to use the genomic prediction model, the accuracy of prediction is first 

confirmed at the validation phase for breeders to have confidence in the model (Nakaya 

and Isobe 2012). The validation population should consist of genotypes that are different 

from those used in the training population. This population is genotyped to allow 

prediction of the GEBV, then phenotyped preferably in an environment other than that in 

which the training population was phenotyped (Ly et al. 2013). The correlation between 

the observed phenotype and GEBV gives the prediction accuracy of the model. To 

maintain a good performance of the model, the validation and breeding populations must 

be related to the training population and genomic prediction models have to be updated 

over time because of linkage disequilibrium decay (Nakaya and Isobe 2012). The data 

collected from breeding and validation populations can be used to update the genomic 

prediction model to improve its accuracy (reviewed by Varshney et al. 2013; Ly et al. 

2013).   
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In genomic prediction, the predictive ability value is the proportion of genetic variance 

explained by marker data. It is often misinterpreted as the proportion of genotypes 

correctly selected by genomic prediction versus phenotypic selection. As discussed by 

Bassi et al. (2016), a prediction accuracy of 0.5 does not mean that 50% of the top selected 

individuals will actually be phenotypically selected. In many cases the percentage of 

individuals correctly selected based on GEBV has been above the prediction accuracy. 

For example, Beaulieu et al. (2014) reported that with predictive values between 0.33 and 

0.44, they were able to achieve 90 % of traditionally estimated breeding values during 

validation. Similarly, Heffner et al. (2011) reported a 95 % prediction accuracy of 

genomic prediction compared to phenotypic selection in a multi-family wheat population 

even if the predictive values ranged from 0.22 to 0.76. The tradeoff between genomic 

selection and phenotypic selection is that genomic selection can afford faster genetic gain 

per unit time, although it is not 100 % accurate as phenotypic selection (Desta and Ortiz, 

2014; Bassi et al, 2016).  

 

During the breeding phase, new hybrids from the breeding program are genotyped and 

the genotype data are fed into a validated genomic prediction model to predict the GEBV. 

The breeder uses these GEBV to make a decision on which hybrids to select for further 

crossing, or phenotyping. The model also predicts the likely phenotypic outcome for each 

hybrid (Pérez and de Los Campos 2014). Selection can be done at the nursery stage so 

that only hybrids with a good combination of traits are taken to the field for evaluation 

and the rest are discarded before wasting resources on them. It is important for the 

breeders to develop the ‘selection index’ of GEBV so that selection is product focused.  

 

‘Selection index’ of GEBV means that among the traits the breeder is predicting, a priority 

order is set as a way of eliminating hybrids that do not meet product requirements. It is 
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an efficient way of simultaneously selecting for all traits that define a best parent, 

promising candidate cultivar, or best cross combination (Bassi et al. 2016). If the selection 

is intended to eliminate hybrids with low genetic value, this can be referred to as negative 

selection that reduces the phenotyping burden. For example, in banana, most hybrids are 

triploid and majority show poor fruit filling characteristics. When selecting candidate 

cultivars, fruit filling trait such as fruit circumference should be given top priority in the 

‘selection index’ of GEBV. Once the number of hybrids to phenotype is reduced, more 

replications can be planted without much strain on financial resources (Heffner et al. 

2009), or some evaluation stages such as EET and PYT can be skipped so that hybrids 

are evaluated faster than usual in multiple locations to reduce the selection cycle. This 

allow the identification of high performing hybrids with stable traits in a much shorter 

time.  

 

3.4.3 Types of genomic prediction models 

Different studies in both animals and plants have tested the predictive ability, or accuracy 

of different genomic prediction models (Legarra et al. 2008; Heffner et al. 2011; Kumar 

et al. 2012; Würschum et al. 2013; Crossa et al.2014; Weng et al. 2016; Momen et al 

2017). These models include ridge regression best linear unbiased prediction (rrBLUP), 

genomic best linear unbiased prediction (GBLUP), best linear unbiased prediction 

method including a trait-specific relationship matrix (TABLUP), least absolute shrinkage 

and selection operator (LASSO), Bayesian ridge regression (BRR), Bayesian LASSO 

(BL), BayesA, BayesB, BayesC, BayesCπ, BayesDπ, elastic net (EN), reproducing kernel 

Hilbert Space (RKHS), Bayesian neural networks (BNN) and Bayesian regularization for 

feed-forward neural networks (BRNN) (Robinson 1991; Tibshirani 1996; Meuwissen et 

al. 2001; Park and Casella 2008; Zhang et al. 2010; Pérez and de Los Campos 2014).  
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The difference in these models largely lies in how they estimate the marker variance and 

how they generate the posterior distribution of marker effects (Table 3). They also differ 

in the assumptions made about traits. Some assume that the traits are controlled by 

additive genetic effects, while other account for non-additive genetic effects such as 

dominance and epistasis (e.g. RKHS). The characteristics of these models have been 

summarized in various publications (Meuwissen et al. 2001; Habier et al. 2011; Pérez and 

de Los Campos 2014; Desta and Ortiz 2014). In this Thesis, the predictive ability of six 

models was investigated using different cross validation strategies and these included 

BRR, BL, BayesA, BayesB, BayesC and RKHS models and a summary of their 

characteristics is given in Table 3.    

  

The above prediction models were developed and optimized for diploid organisms. 

However, they have been extended to polyploid organisms (Crossa et al. 2014; Gezan et 

al. 2017) where a balanced distribution of alleles is assumed to exist as in diploids. Banana 

is unique in that breeding populations are generated by crossing parents of different ploidy 

levels, which results in a mixture of diploid, triploid and tetraploid hybrids. The 

generation of a prediction model with a population consisting of genotypes of different 

ploidy levels is usually a challenge due to (i) uncertainty of allele frequency in that 

population and (ii) uncertainty of allelic dosage at the loci. Blischak et al. (2015) 

attempted to address the problem of allele dosage uncertainty in a simulated 

autopolyploid population. They treated the genotypes as latent variables in a hierarchical 

Bayesian model and sequence reads as random samples. They concluded that uncertainty 

of allele dosage in polyploids in addition to number of individuals sampled and 

sequencing coverage affected the calculation of allele frequencies. Yet, allele frequency 

is key in population genetics models for understanding allele inheritance patterns.  
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Table 3: Main characteristics of the six genomic prediction models evaluated in this 

Thesis 

Model 

characteristics 
BRR BL BayesA BayesB BayesC RKHS 

Parametric Yes Yes Yes Yes Yes  

Semiparametric      Yes 

Additive genetic 

effects 
Yes Yes Yes Yes Yes  

Non-additive 

genetic effect 
     Yes 

Distribution of 

marker effects 
Gaussian 

Fixed, 

Gamma, or 

Beta 

Scaled t Scaled t Gaussian  

Distribution of 

marker variance  
X -2 

Double 

exponential 
X -2 X -2 X -2  

Uniform 

shrinkage 
Yes      

Nonuniform 

shrinkage 
 Yes Yes Yes Yes  

No marker 

selection 
Yes      

Variable marker 

selection  
 Yes Yes Yes Yes  

Prior probability 

of marker effect 
   Yes Yes  

Source: Desta and Ortiz (2014) and Pérez and de Los Campos (2014)  

 

In bananas, the expected level of heterozygosity varies with ploidy level. For example, if 

a bi-allelic SNP, A/G is segregating at locus i, then, one, two and three possible 

heterozygotes are expected in diploids (AG), triploids (AAG and AGG) and tetraploids 

(AAAG, AAGG and AGGG), respectively. Determining the level of heterozygosity at a 

locus depends on how well the sequencing reads represent the true genotype and the 

choice of bioinformatics tools used during SNP calling. Picard tools allow normalization 
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of sequencing reads by marking and removing duplicates so that genomic regions with 

fewer reads that are uniquely mapped are not excluded during SNP calling. In addition, 

GATK has an option of setting the ploidy level during SNP calling with 

UnifiedGenotyper that allows heterozygosity to vary according to ploidy level (Clevenger 

et al. 2015). This is very useful when dealing with populations of mixed ploidy levels. 

Genomic prediction models use marker data in a numeric form. In order to maintain allelic 

dosage status of the SNP data, careful choice of tools that convert SNP data to numeric 

format is important. R-based script named AlleleDosage R function was developed as 

part of this Thesis to address this issue. The script can be accessed from the link. 

http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage_R_function.docx  

 

Other than allelic dosage and mixed ploidy population, several factors influence the 

predictive ability of genomic prediction models. They include size and composition of 

the training population, the relationship between training and breeding populations, 

number of markers used, the interaction between genotype and environment, and 

heritability of the trait (Crossa et al. 2016; Bassi et al. 2016). In order to reach high 

predictive ability, the population should be large enough to capture most of the 

segregating alleles in the breeding gene pool. As noted by Bassi et al. (2016), no ideal 

population size exists for all species and traits. Hence, attention should be paid to how 

related the individuals are, the heritability of the trait, whether the population is bi-

parental, or a mixture of several families and the cost involved in phenotyping the training 

population. The breeding population should come from genotypes that were involved in 

the training phase. The number of markers should be large enough so that at least one, or 

more markers are in linkage disequilibrium with the QTL controlling the trait (Myles 

2013; Desta and Ortiz 2014). GBS gives many SNP markers that improves the prediction 

http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage_R_function.docx
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accuracy of the genomic prediction models compared to other platforms that give fewer 

markers with less missing data (Heslot et al. 2013). 

 

Increasing the size of a training population has been shown to increase prediction 

accuracy and most studies have used training populations ranging from 200 to 10,000 

individuals (Lorenz et al 2011). The gain in prediction accuracy due to increase in 

population size has a threshold beyond which it plateaus, or makes no economic sense.  

Banana populations are expensive to phenotype as each banana plant occupies 6 m2 of 

field space for at least two, or three crop cycles (Tushemereirwe et al. 2015). To obtain 

representative phenotypic data, each clone has to be replicated within the experimental 

plot and in several locations. Phenotyping thousands of banana clones requires very large 

fields and the cost would be exorbitant in comparison to phenotyping the same number 

of genotypes in cereals like wheat, which require about 0.054 m2 (18 cm between plants 

x 30 cm between rows) per plant, i.e. 0.9 % of what is needed for banana.   

 

Therefore, the effective size of a training population required to achieve a high accuracy 

of the genomic prediction model depends on the population under study (Goddard 2009) 

and the heritability of trait of interest (Lorenz et al. 2011). Many breeding programs, 

including animal breeding use a small number of parental lines that constitute the 

effective breeding population. Animal breeders, however, keep phenotypic and genotypic 

records from many progenies around the world and these constitute an effective training 

population, which makes genomic prediction relatively easy to implement at no 

substantial cost (vanRaden et al. 2009).  

 

In barley, the effective breeding population size is reported to be less than 50 lines 

(reviewed by Lorenz et al. 2011). Regardless of the number of parental lines used in a 
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breeding program, data from many progenies resulting from crosses between parents is 

beneficial in genomic prediction. Unlike QTL mapping, the training population for 

genomic selection is not necessarily derived from bi-parental crosses, but is rather a 

collection of representative genotypes from a breeding program where genomic 

prediction is to be applied (Heffner et al. 2009; reviewed by Mammadov et al. 2012). This 

makes it convenient to investigate the utility of genomic prediction in banana where the 

effective breeding population is small, and segregating populations for different traits are 

limited, or completely missing.  

 

During genomic prediction model development, consideration for the interaction of 

genotype by environment should be made because it leads to differences in phenotypic 

expressions of some trait (Manrique and Hermann, 2000). Traits that are strongly 

controlled by the genotype are more stable across different environments as compared to 

those controlled by environment. The G × E interaction effect analysis is useful in 

studying trait heritability and stability in breeding materials (Taghouti et al. 2010). 

Generally, genomic prediction models that use average environment data have been 

shown to be more robust than those based on a single environment (Burgueño et al. 2012). 

The challenge in banana is that we do not know what traits are stable across environments 

due to lack of systematic research.  

 

3.5 Computational and software requirements for genomic prediction 

With the fast progress in DNA sequencing technologies, computation challenges arose to 

cope with the massively generated sequence data (Metzker 2010). The main challenges 

include efficient storage, retrieval and processing of such huge data with reduced error at 

reduced cost (Wang et al. 2009).  Most breeding programs do not have funds and technical 
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capacity do establish such facilities. However, these services can be outsourced from 

private service providers. The challenge comes when standard protocols cannot deliver 

all the breeder needs to answer certain questions. Customizing a protocol for a onetime 

user, or a few users is very expensive. This means that the breeder should have the 

capacity to perform these specialized analyses. This is possible if several breeding 

programs come together and establish a synergy that helps to improve the breeding 

process even in small, financially less privileged breeding programs (Hickey et al. 2017).   

 

Numerous bioinformatics tools have been developed to perform individual tasks such as 

alignment of short reads to the reference genome, de novo assembly of reads into contigs 

for organisms without reference genome, SNP calling tools, diversity analysis software 

and much more. Some of these tools are in the form of bioinformatics kits, or pipelines 

and freely available to the public, or commercialized. For example, Galaxy tools from 

galaxyproject.org and the genomic association and prediction integrated tool (GAPIT) 

from Cornell University (Lipka et al. 2014) are freely available while other are 

commercialized like for example, CLC genomic workbench and others. Bioinformatics 

pipelines such as TASSEL-GBS have been developed to help circumvent problems 

associated with handling GBS data (Glaubitz et al. 2014).  

 

In genomic prediction, statistical modeling is crucial, yet GBS presents a lot of missing 

data and accurate imputations are still a challenge for polyploid crops. In order for 

genomic selection to be embraced by breeders, flexible statistical software that allows 

breeders to analyze massive genomic data in real time and requires less sophisticated 

computer systems is of importance. The R environment from www.r-project.org provides 

many packages that facilitate statistical modeling of biological data. Through integrative 

packages in R, genomic and phenotypic data can be analyzed together to generate 

http://www.r-project.org/
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genomic prediction models and to test their accuracy. One example is the Bayesian 

generalized linear regression (BGLR) R package used for genomic predictions (Pérez and 

de Los Campos 2014).  

 

3.6 Prospects of genomic prediction  

Molecular markers have contributed enormously to the understanding of genetic diversity 

within banana germplasm. They have been used to clarify taxonomic classification, 

identify cultivars and track pedigrees in breeding populations. However, little progress 

has been made in using DNA markers for routine breeding and selection of candidate 

cultivars and breeding parents. With advances in molecular marker technology, it is 

expected that genomic selection as a form of MAS will play a major role in improving 

the efficiency of conventional crossbreeding.  

 

Breeding recalcitrant crops and ensuring timely delivery of hybrids to farmers that 

address issues of food security and income through sustainable production is the dream 

of every banana breeder. Application of genomic predictions in banana breeding is quite 

timely as resources are always small to support long-term programs. However, more is 

yet to be understood about this field of applied biology in crop breeding. In the initial 

stages, resources need to be directed in developing efficient, accurate and cost-effective 

phenotyping technologies as well as building necessary capacities in breeding teams to 

implement genomic prediction.   

 

Banana breeding requires multidimensional and interdisciplinary approaches involving 

breeders, floral biologists, molecular biologists, geneticists, cytogeneticists, 

bioinformaticians, biostatisticians, agronomists and farmers/consumers (Hickey et al. 
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2017). Therefore, there is ultimate need to establish a banana interactive resource 

database (Musabase) to maintain global Musa genotypes and phenotypic information with 

easy to use bioinformatics pipelines and statistical packages for breeders. Although this 

may be farfetched, once achieved the benefits could be remarkable. A recent publication 

by Ruas et al. (2017), which shows effort to link different databases for banana 

information resources is a good starting point, but more is still required. Trait based 

models need to be developed and validated for routine use in banana breeding programs 

to increase genetic gain. 
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4 Goals of the Thesis 

The main goal of this Thesis is to present empirical evidence on the performance of 

genomic prediction models in banana breeding based on SNP marker data obtained by 

the genotyping by sequencing approach. The Thesis summarizes the current knowledge 

about bananas, including production constraints, breeding strategies, use of molecular 

markers in banana research and the need to accelerate conventional crossbreeding by 

using genome-wide markers through genomic predictions. Special emphasis was directed 

towards developing and understanding the predictive ability of six genomic prediction 

models (BRR, BL, BayesA, BayesB, BayesC and RKHS) and how factors such as field 

management and crop cycle affect trait variation in genotypes and the predictive ability 

of the prediction models for a set of 15 traits. The working hypothesis was that field 

management and crop cycle had no influence on trait expression and predictive ability of 

genomic prediction models. To achieve the above objective, the following specific 

objectives were pursued through experimental analysis and the results obtained are 

summarized in publications: 

1. To assess the variation and correlation of traits in the genomic selection training 

population with respect to crop cycles and field management. 

2. To determine the genetic diversity of the genomic selection training population. 

3. To compare the predictive ability of a set of six models with marker, pedigree and 

both pedigree and marker information for fifteen traits scored in the training 

population and select the best genomic prediction model for each trait, or a group 

of traits. 

4.  To determine the predictive ability of models with a training population grown 

under two different field management practices (Genotype × Environment 

interaction). 
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5. To determine the predictive ability of the best model for prediction of traits within 

and across crop cycle 1 / mother plants and crop cycle 2 / first ratoons/first suckers 

(Genotype × Cycle interaction) 

6. To determine the effect of accounting for allelic dosage on the predictive ability 

of the best genomic prediction model for each trait. 

7. To determine the effect of using genomic prediction models fitted with averaged 

environment data and allele dosage SNP markers in the prediction of genotype 

performance in particular environments. 

8. To determine the accuracy of selection achieved based on GEBV relative to 

phenotypic data within the training population.   
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5 General conclusion and recommendations 

The aim of this Thesis was to develop and evaluate the predictive ability of genomic 

prediction models in a banana genomic selection training population. Among all models 

tested ((BRR, BL, BayesA, BayesB, BayesC and RKHS), BayesB was superior in 

prediction for most traits, hence, breeders could use it on all traits tested. Fruit filling and 

fruit bunch traits were predicted quite well in all cross-validation strategies. This implies 

that negative selection could be applied in breeding program to reduce the burden of 

phenotyping hybrids with inferior fruits. Although the training population was composed 

of genotypes of different ploidy levels, the predictive ability of models based on bi-allelic 

SNP (BA-SNP) markers and models based on allelic dosage SNP (AD-SNP) markers was 

quite high particularly for fruit filling traits, though BA-SNP performed better than AD-

SNP. However, for some traits, accounting for allele dosage may be necessary. A script 

to account for allelic dosage (AlleleDosage R function) was developed and can be 

customized depending on the user’s requirements and it could be applicable on all 

polyploid species. The R-script can be accessed from the following link: 

http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage_R_function.docx  

 

The high correlation observed between traits within trait categories (plant stature, 

suckering behaviour, black leaf streak resistance, fruit bunch and fruit filling) during 

phenotypic analysis was confirmed by the predictive values. Hence, breeders do not need 

to predict all traits in order to make a decision on which hybrids to select as parents for 

further crossing, or as promising candidate cultivars. Focus should be on one, or two traits 

that are easy to phenotype in each trait category. Finally, phenotype data from all field 

trials should be used to train the prediction model so that the model is robust enough to 

predict the performance of new hybrids in the phenotyping environment.  

 

http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage_R_function.docx
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The immediate application of the prediction models is to select against triploid hybrids 

without edible fruits because they constitute the biggest percentage of hybrids in banana 

breeding and yet, they have no further use in breeding. In the diploids and tetraploids, 

genomic predictions will help in identifying the best parents for crosses. It is expected 

that when banana breeding increases the number of hybrids produced, genomic prediction 

will be a valuable tool during the selection process to improve the genetic gain per unit 

time and cost.  

 

When implementing genomic selection at the breeding phase, the best parental clones and 

the best promising candidate, or new cultivar should be the first priority. In order to 

maximise genetic diversity, two alternatives are proposed. (1) After selecting the top 5 

%, the best genotype in each family should be also selected for phenotyping. (2) After 

selecting the best genotypes, include about 5 % of genotypes with median and worst 

GEBV for phenotyping as well. Since the genotypic data will be already available, these 

data sets will be important for updating the models once prediction accuracies decrease 

due to changes in allele frequencies. Also, it will help in maintaining some rare alleles 

that could be totally lost if selection focuses on the top best.   

 

If genomic predictions are to be employed in breeding Mshare bananas and Plantain, 

separate training populations have to be assembled, phenotyped and genotyped because 

of differences in allele frequencies, trait expression and linkage disequilibrium. Selection 

of genotypes for the training population should aim at multiple families. Hybrids that 

show segregation for various traits within each family should be included in order to 

capture the additive and non-additive genetic effects like heterosis very well.  A minimum 

of 20 genotypes per family is recommended for 15 to 25 families. However, if the cross 
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combinations are many and involve many half-sib families the number may be reduced 

so that a target training population of 300-500 is achieved. 

 

For EAHB, Mshare and Plantain breeding programs, routine screening of ploidy level 

using flow cytometry should be done while the plants are still in the nursery. This will 

help during selection process as the genomic selection criterial for triploids would be 

slightly different from diploids and tetraploids based on the ‘selection index’ of GEBV. 

 

Given the high prediction of fruit filling, genome-wide association studies should be 

conducted to identify the loci and SNP markers associated with this trait. This could 

facilitate development of PCR-based markers alongside genomic prediction for routine 

diagnosis of the trait by breeding programs. 

 

Sensory and postharvest quality traits should be recorded on the training population so 

that genomic prediction models are developed for such traits before terminating the trials. 

Also, the fertility of improved triploids should be tested with other male parents that are 

not in their pedigree so that progressive breeding is practiced in banana. This could allow 

the secondary triploids to serve a pathway for gene pyramiding. 
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6 Publications 

6.1 Moses Nyine, Brigitte Uwimana, Nicolas Blavet, Eva Hřibová, Helena Vanrespaille, 

Michael Batte, Violet Akech, Allan Brown, Jim Lorenzen, Rony Swennen, Jaroslav 

Doležel (2017) Genomic Prediction in a Polyploid Crop: Genotype by Environment 

Interaction and Allelic Dosage Effects on Predictive Ability in Banana. Theoretical and 

Applied Genetics (submitted) 

 

Abstract 

Improving the efficiency of selection in conventional crossbreeding is a major priority in 

banana breeding. Routine application of classical marker assisted selection (MAS) is 

lagging in banana due to limitations in MAS tools. Genomic selection (GS) based on 

genomic prediction models can address some limitations of classical MAS, but the use of 

GS in banana has not been reported to date. The aim of this study was to evaluate 

predictive ability of six genomic prediction models for 15 traits phenotyped over two crop 

cycles under different cross validation strategies in a banana training population. The 

single nucleotide polymorphism (SNP) markers used to fit the models were obtained from 

genotyping by sequencing (GBS) data. Models that account for additive genetic effects 

provided better predictions with 12 out of 15 traits. The performance of BayesB model 

was superior to other models particularly for fruit filling and fruit bunch traits. Models 

that included averaged environment data were more robust in trait prediction even with a 

reduced number of markers. Accounting for allelic dosage decreased the predictive ability 

of all models by 15% on average, but the prediction trend remained the same across traits 

and within trait categories as predicted by bi-allelic SNP. A high correlation in prediction 

was observed within trait categories suggesting that only traits easy to phenotype should 

be considered for genomic predictions during the breeding phase. 
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6.2 Moses Nyine, Brigitte Uwimana, Rony Swennen, Michael Batte, Allan Brown, Pavla 

Christelová, Eva Hřibová, Jim Lorenzen, Jaroslav Doležel (2017) Trait variation and 

genetic diversity in a banana genomic selection training population. PLoS ONE 12(6): 

e0178734. https://doi.org/10.1371/journal.pone.0178734. 

 

 

Abstract 

Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of 

income and food security, with the highest per capita consumption worldwide. Pests, 

diseases and climate change hamper sustainable production of bananas. New breeding 

tools with increased crossbreeding efficiency are being investigated to breed for resistant, 

high yielding hybrids of East African Highland banana (EAHB). These include genomic 

selection (GS), which will benefit breeding through increased genetic gain per unit time. 

Understanding trait variation and the correlation among economically important traits is 

an essential first step in the development and selection of suitable genomic prediction 

models for banana. In this study, we tested the hypothesis that trait variations in bananas 

are not affected by cross combination, cycle, field management and their interaction with 

genotype. A training population created using EAHB breeding material and its progeny 

was phenotyped in two contrasting conditions. A high level of correlation among 

vegetative and yield related traits was observed. Therefore, genomic prediction models 

could be developed for traits that are easily measured. It is likely that the predictive ability 

of traits that are difficult to phenotype will be similar to less difficult traits they are highly 

correlated with. Genotype response to cycle and field management practices varied 

greatly with respect to traits. Yield related traits accounted for 31–35% of principal 

component variation under low and high input field management conditions. Resistance 

to Black Sigatoka was stable across cycles but varied under different field management 

depending on the genotype. The best cross combination was 1201K-1xSH3217 based on 
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selection response (R) of hybrids. Genotyping using simple sequence repeat (SSR) 

markers revealed that the training population was genetically diverse, reflecting a 

complex pedigree background, which was mostly influenced by the male parents. 
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8 Abbreviation 

BL   Bayesian LASSO 

BRR   Bayesian ridge regression 

cv.   Cultivar 

EAHB   East African Highland banana 

GBS   Genotyping by sequencing 

GEBV   Genomic estimated breeding value 

GS   Genomic selection 

LASSO  Least absolute shrinkage and selection operator 

RKHS_M  Reproducing kernel Helbert space with marker data 

RKHS_P  Reproducing kernel Helbert space with pedigree data 

RKHS_PM  Reproducing kernel Helbert space with pedigree and marker data 

SNP   Single nucleotide polymorphism 
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9 Presentations   

 

9.1 Conference abstracts 

 

Nyine, M. B. Uwimana, R. Swennen, M. Batte, A. Brown, E. Hřibová and J. Doležel 

(2016) Genomic breeding approaches for East African bananas. [Abstract] presented at 

XXIV Plant and Animal Genome Conference. San Diego, CA (USA) 9-13 Jan 2016. 

http://hdl.handle.net/10568/78754  

 

Abstract 

The polyploidy nature of banana is a limiting factor in the implementation of strategies 

such as marker assisted selection (MAS) or genome wide association mapping (GWAS). 

The triploid nature of cultivated varieties complicates conventional breeding strategies 

and improved varieties can take up to 20 years before they can be released to the public, 

which necessitates the use of efficient molecular tools to more rapidly respond to abiotic 

and biotic stresses and to address the needs of growers and consumers. In addition, the 

high cost of phenotyping perennial large-stature plants such as banana, and the rapidly 

decreasing cost of genotyping, makes the use of genomic prediction models using single 

nucleotide polymorphism (SNP) markers extremely attractive to banana breeders. A 

Genomic Selection (GS) training population consisting of 307 banana genotypes was 

developed for initial analysis with ploidy levels of the plant material ranging from 

diploids to tetraploids. Plants were genotyped using the genotyping by sequencing (GBS) 

approach (Elshire et al. 2011) with PstI as the sole restriction enzyme. Sequence data was 

processed through a bioinformatics workflow and single nucleotide polymorphisms 

(SNPs) were called using the genomic analysis tool kit (GATK). Data was filtered for 

quality and for loci with >50% missing data. Phenotypic data for 25 traits are being 

http://hdl.handle.net/10568/78754
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collected from two locations since 2012. Yield-related traits (fruit pulp diameter, bunch 

weight, number of suckers, etc.) are collected at flowering and harvest Analysis of GBS 

data resulted in 11201 SNP loci. The results of multiple prediction models are discussed 

and compared. 

 

 

 

9.2 Poster presentation 

Moses Nyine, Brigitte Uwimana, Rony Swennen, Michael Batte, Allan Brown, Pavla 

Christelová, Eva Hřibová, Jim Lorenzen, Jaroslav Doležel (2017) Trait variation in a 

banana training population for genomic selection. Annual Banana Project Meeting, April, 

Kampala, Uganda. 

 

Poster abstract 

Conventional crossbreeding is the main approach used in banana improvement. However, 

the method requires up to two decades of crossing and field evaluation to develop a new 

hybrid. This is because selection is carried out at different levels. At every level, plants 

are evaluated after three crop cycles, each taking about a year. Yield traits can only be 

scored at harvest while organoleptic traits are recorded after harvesting, making the 

selection process slow, expensive and labour intensive.  New breeding tools with 

increased crossbreeding efficiency are being investigated to breed for resistant, high 

yielding hybrids of East African Highland banana (EAHB). These include genomic 

selection (GS), which will benefit breeding through increased genetic gain per unit time. 

Understanding trait variation and the correlation among economically important traits is 

an essential first step in the development and selection of suitable genomic prediction 

models for banana. In this study, we tested the hypothesis that trait variations in bananas 

are not affected by cross combination, cycle, field management and their interaction with 

genotype. A training population created using EAHB breeding material and its progeny 
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was phenotyped in two contrasting conditions. A high level of correlation among 

vegetative and yield related traits was observed. This could mean that the predictive 

ability of traits that are difficult to phenotype will be similar to less difficult traits they 

are highly correlated with. Therefore, genomic prediction models could be developed for 

traits that are easily measured. Black Sigatoka related traits were not affected by crop 

cycle, meaning that these could be measured in the first cycle only, to reduce on 

phenotyping burden. Growth traits such as plant height and girth were the least affected 

by field input management. Conversely, yield-related traits such as bunch weight, number 

of hands and number of fingers were significantly affected by both crop cycle and field 

input management. 

 

 

9.3 Poster presentation  

Nyine, M., B. Uwimana, R. Swennen, M. Batte, A. Brown, P. Christelová, E. Hřibová, J. 

Lorenzen and J. Doležel (2016) Trait Variation in a Banana Training Population for 

Genomic Selection. P4D and R4D meeting, November at IITA, Ibadan, Nigeria. 

 

9.4 Poster presentation 

Nyine, M., B. Uwimana, T.R. Ssali, J. Kubiriba, E. Amorim, Y. Othman, R. Swennen, 

M. Batte, E. Hřibová and J. Doležel (2015) Towards marker assisted breeding in banana. 

R4D meeting, November at IITA, Ibadan, Nigeria. 
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Nyine, M., B. Uwimana, R. Swennen, M. Batte, E. Hřibová, J. Lorenzen and J. Doležel 

(2015) Genomic selection to accelerate banana breeding. Roots, Tubers and Bananas 

(RTB) project evaluation, February at IITA, Sendusu, Uganda. 
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Key message  

Genomic prediction is possible in multi-ploidy populations and the high predictive 

values observed shows the potential of genomic prediction in banana to increase 

breeding efficiency.   

Abstract  

Improving the efficiency of selection in conventional crossbreeding is a major priority in 

banana breeding. Routine application of classical marker assisted selection (MAS) is 

lagging in banana due to limitations in MAS tools. Genomic selection (GS) based on 

genomic prediction models can address some limitations of classical MAS, but the use of 

GS in banana has not been reported to date. The aim of this study was to evaluate 

predictive ability of six genomic prediction models for 15 traits phenotyped over two crop 

cycles under different cross validation strategies in a banana training population. The 

single nucleotide polymorphism (SNP) markers used to fit the models were obtained from 

genotyping by sequencing (GBS) data. Models that account for additive genetic effects 

provided better predictions with 12 out of 15 traits. The performance of BayesB model 

was superior to other models particularly for fruit filling and fruit bunch traits. Models 

that included averaged environment data were more robust in trait prediction even with a 

reduced number of markers. Accounting for allelic dosage decreased the predictive ability 

of all models by 15% on average, but the prediction trend remained the same across traits 

and within trait categories as predicted by bi-allelic SNP. A high correlation in prediction 

was observed within trait categories suggesting that only traits easy to phenotype should 

be considered for genomic predictions during the breeding phase.  

 

Keywords  

allelic dosage SNP; banana; genomic prediction; model predictive ability; polyploid crop 
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Introduction 

Bananas are large perennial herbaceous monocots with a majority of cultivated 

types being triploid (2n = 3x = 33). They are a staple food to millions of people in many 

tropical countries and a source of income to many homesteads. Triploid bananas are 

mostly sterile although some cultivars have residual fertility that leads to limited seed 

production when hand pollinated (Ssebuliba et al. 2006). They are vegetatively 

propagated by means of suckers, a method that limits gene flow and recombination. The 

lack of genetic variability of bananas grown in particular regions renders all cultivars 

susceptible to pests, pathogens and environmental stress. This causes reduced 

productivity of bananas that leads to food insecurity and income loss.  

Given the importance of banana, improving the resistance of cultivated bananas 

is the most sustainable solution to declining production (Simmonds 1986; Rowe 1990). 

This can be achieved by crossing with wild or improved diploids that carry host plant 

resistance genes to pathogens and pests. The triploid nature of cultivated bananas such as 

the East African highland banana (EAHB), impedes the breeding process due to low 

fertility or complete sterility of most cultivars. To overcome this problem, breeders have 

to develop intermediary improved diploids and tetraploids, which serve as parents to 

generate secondary triploids that are resistant and high yielding. Unlike a majority of 

crops, banana breeding involves crossing parents of different ploidy levels (Fig. 1). Partial 

fertility of polyploids relies on irregular meiosis and progenies consist of individuals with 

different ploidy. Due to linkage drag of undesirable alleles, several evaluations and 

phenotypic selection at various stages are implemented making banana breeding 

(depicted in Fig. 2) expensive and slow. Clearly, the integration of molecular tools into 

conventional breeding programs is required to increase banana breeding efficiency. 

Marker assisted selection (MAS) helps in selection of genotypes carrying the trait 

of interest at an early stage. However, very few reports on the use of MAS in banana 
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improvement are available. For example, markers have been used to screen for Fusarium 

tropical race 4 resistance and identification of banana hybrids that are devoid of infectious 

endogenous banana streak virus (BSV) in the B-genome (Wang et al. 2012b; Umber et 

al. 2016; Noumbissié et al. 2016). Most MAS technologies aim at identifying molecular 

markers that are linked to traits through quantitative trait loci (QTL) analysis. Once the 

markers are identified, the breeder can use them to track the inheritance of the traits of 

interest. MAS has been successfully implemented where traits are controlled by a few 

QTL with major genetic effects (Asíns 2002; Collard and Mackill 2008). However, some 

traits such as yield, drought tolerance, and some other may be controlled by numerous 

QTL, each explaining a small portion of the genetic variance (Asíns 2002). Identifying 

all QTL controlling such traits and the markers that are in linkage disequilibrium with 

those QTL becomes a challenge. Even if it would be possible to identify small-effect 

QTL, their introgression into active breeding programs would be extremely challenging. 

A relatively new approach of MAS in plant breeding known as genomic selection 

(GS) that uses genomic prediction models was proposed by Meuwissen et al. (2001). 

Several variants of the original GS methodology have also been proposed (Goiffon et al. 

2017). In GS, high-density markers spread across the entire genome are utilized to 

estimate the genetic value of a genotype using statistical models. As this estimate is based 

on genomic data, it is referred to as genomic estimated breeding value (GEBV). The 

primary advantage of GS over other forms of MAS is that the identification of individual 

QTL associated with a trait of interest is not necessary because QTL are assumed to be in 

linkage disequilibrium with at least one or more single nucleotide polymorphism (SNP) 

(Meuwissen et al. 2001). The decrease in genotyping costs by next generation sequencing 

technologies and the emergence of genotyping by sequencing (GBS), which allows SNP 

discovery in large populations, made genomic prediction possible (Elshire et al. 2011). 

As the generation of marker data becomes increasingly cheaper than phenotyping, it is 
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expected that GS will reduce breeding costs, increase selection intensity and accelerate 

the breeding efficiency. 

Genomic selection is implemented in three phases that include: training, 

validation and breeding (Nakaya and Isobe 2012; Jannink et al. 2010). In the training 

phase, a model of the form “predicted phenotype = general phenotype mean in the 

population (intercept) + GEBV + residual error” is generated from both phenotypic and 

genotypic data. The predictive ability of a genomic prediction model is determined by 

cross validation as the correlation between the predicted and observed value of a trait or 

the correlation between GEBV and observed phenotype (Jannink et al. 2010; Crossa et 

al. 2014; Crossa et al. 2016).  

Genomic selection has been successful in animal breeding (Gorddard and Hayes 

2007). It is also expected to increase genetic gain per unit time and cost in plant breeding 

especially when applied on traits with low heritability for which phenotypic selection is 

difficult and for crops with long selection cycle such as fruit trees, or banana (Wong and 

Bernardo 2008; Crossa et al. 2010; Crossa et al. 2014; Beaulieu et al. 2014). Different 

studies in plants and animals have tested the predictive ability, or accuracy of different 

genomic prediction models (Legarra et al. 2008; Heffner et al. 2011; Kumar et al 2012; 

Würschum et al. 2013; Crossa et al. 2016; Weng et al. 2016; Momen et al. 2017). These 

include best linear unbiased prediction (BLUP) and different Bayesian models (Robinson 

1991; Tibshirani 1996; Meuwissen et al. 2001; Park and Casella 2008; Zhang et al. 2010; 

Pérez and de los Campos 2014). Characteristics of the models are summarised in 

numerous publications (Meuwissen et al 2001; Habier et al 2011; Pérez and de los 

Campos 2014; Desta and Ortiz 2014). Although these models were originally developed 

and optimized for diploid organisms, they have then been extended to polyploid 

organisms (Crossa et al. 2014; Gezan et al. 2017). However, all studies used populations 

with organisms of the same ploidy level. Polyploid organisms are challenging to model 
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due to (i) uncertainty of allele frequency in the population and (ii) uncertainty of allelic 

dosage at the loci (Blischak et al. 2016).  

For bananas, besides the polyploid nature, there is a small effective breeding 

population. Yet the accuracy of genomic prediction depends on the size of training 

population. It should be large enough to capture all the segregating alleles in the breeding 

genetic pool (Crossa et al. 2014; Bassi et al. 2016). However, as noted by Bassi et al. 

(2016), no ideal population size exists for all species and traits. The parameters that need 

to be considered include relatedness of the individuals, the heritability of the trait, whether 

the population is bi-parental, or a mixture of several families and the cost involved in 

phenotyping the training population. For example, Beaulieu et al. (2014) used 1694 open 

pollinated genotypes of white spruce with 6385 SNP markers and obtained different 

accuracies of prediction depending on the trait and the relationship between the training 

and validation data sets. The highest predictive ability observed was 0.44 for cell radial 

diameter. In contrast, Crossa et al. (2010) used a maize population of less than 300 

individuals with less than 1200 markers and obtained a predictive ability as high as 0.79 

for male flowering under well-watered conditions.  

This study explored the potential of genomic prediction in banana, a polyploid 

crop for which the population was composed of individuals with different ploidy levels, 

but mostly triploids (~85%) derived from EAHB. The objectives were to (i) compare the 

predictive ability of a set of six models with marker, pedigree and both pedigree and 

marker information for 15 traits scored in the training population and select the best 

genomic prediction model for each trait or a group of traits, (ii) determine the predictive 

ability of models with a training population grown under two different field management 

practices (i.e., studying genotype × environment interaction), (iii) determine the 

predictive ability of the best model for prediction of traits within and across crop cycle 1 

/ mother plants and crop cycle 2 / first ratoons/first suckers (i.e., genotype × cycle 
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interaction), (iv) determine the effect of accounting for allelic dosage on the predictive 

ability of the best genomic prediction model for each trait, (v) determine the effect of 

using genomic prediction models fitted with averaged environment phenotype data and 

allele dosage SNP (AD-SNP) markers in the prediction of genotype performance in 

particular environments and (vi) determine the accuracy of selection based on GEBV 

relative to phenotypic data within the training population. To achieve these objectives, a 

training population of 307 banana genotypes consisting of breeding clones and hybrids 

was phenotyped and genotyped. 

 

Materials and Methods 

Phenotyping 

 The banana genomic selection training population used in this study and the traits 

measured were described in detail by Nyine et al. (2017). Briefly, the training population 

consisted of 307 genotypes that included diploid (11%), triploid (85%) and tetraploid 

(4%) plants. The core breeding clones (parents) accounted for 12% of the population. The 

triploid parents were EAHB some of which were crossed with cv. Calcutta 4 to generate 

tetraploid hybrids which are used as breeding clones (Supplementary Table 1). The 

diploid parents consist of both wild and improved parthenocarpic genotypes. The rest 

were hybrids from early evaluation trials and advanced clones that had been selected over 

time during the 20 years of banana breeding by the International Institute of Tropical 

Agriculture (IITA) and the National Agricultural Research Organization (NARO) of 

Uganda. In total, 77 families (cross combinations) of variable sizes were represented in 

this population. Phenotyping was done at IITA research station located at Sendusu in 

Namulonge, 0.53o N 32.58o E, 1150 m above sea level with rainfall of about 1200 mm/y 
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split into two rainy seasons, March-June and September-December and an average annual 

temperature of 22oC.  

Two phenotyping fields were established to mimic different agronomic practices 

that farmers use, thus creating a difference in growth environment. A completely 

randomized design with three replications per genotype was used to establish the fields. 

Sword and maiden suckers were used as planting materials with a spacing of 2 × 3 m. In 

the first field, 20 kg of manure was applied at planting, but neither mulching, nor NPK 

fertilizer application was done afterwards and this was considered a low input field 

management (GS1). The second field was planted with 20 kg of manure, then mulched, 

and NPK fertilizer (25:5:5) was added at a rate of 480g per plant mat per year, and this 

was considered a high input field management (GS2). In both fields, sucker management 

was done to maintain a maximum of three plants per mat.  

Data were collected for two crop cycles in each field between 2013 and 2016. 

Fifteen traits were considered for genomic prediction modelling and these were 

categorized as plant stature, suckering behaviour, black leaf streak resistance, fruit bunch 

and fruit filling. For plant stature, plant height and girth at 100 cm from soil surface were 

measured at flowering. The total number of suckers and height of tallest sucker were 

recorded at flowering of crop cycle 1 and height of tallest sucker at harvest to represent 

suckering behaviour. The number of standing leaves and index of non-spotted leaves were 

determined at flowering to characterize black leaf streak resistance. The index of non-

spotted leaves was calculated according to the formula of Craenen (1998) with some 

modification as reported by Nyine et al. (2017). The fruit bunch traits scored at harvesting 

included the days to fruit maturity, bunch mass, number of hands and number of fruits.  

For fruit filling, fruit length, fruit circumference, fruit diameter and pulp diameter were 

measured at harvest. The data were checked for outliers and entry errors prior to use in 

model fitting. It should be noted that not all traits had full data sets because some 
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genotypes had not completed the second cycle through harvest by the time of these 

analyses. 

 

Genotyping 

 The population was genotyped by sequencing (GBS) as described by Elshire et al. 

(2011). The restriction enzyme PstI was used in the genome complexity reduction during 

sequencing library preparation. Barcode containing adaptors were ligated to the genomic 

DNA fragments. Ninety-six samples were multiplexed and sequenced on a single 

Illumina lane at the Institute of Genomic Diversity (IGD), Cornell University. Each set 

of 96 samples was run twice to increase the number of reads per PstI tag. Single-end reads 

of 100 bp were generated during sequencing. A workflow for the analysis of sequence 

reads was developed (Supplementary Figure S1). 

 Sequence reads were filtered using fastq_quality_filter provided in the module 

fastx.0.0.13 (-q 20 -p 90). Sequence reads were subjected to quality control analysis using 

fastqc provided in module FastQC.0.10.1. Reads from each lane were demultiplexed into 

individual sample reads using fastx_barcode_splitter.pl provided in fastx.0.0.13. The 

barcodes were trimmed using fastx_trimmer in the module fastx.0.0.13. Any remaining 

adaptor sequences were removed using fastx_clipper also provided in module 

fastx.0.0.13. The PstI tag (5’-TGCAG-----3’) was retained on each sequence read to act 

as a reference point during read alignment to the reference genome. Reads of same 

genotype were merged into one file for downstream analysis. Bowtie2 was used to align 

reads to the latest publicly available reference banana genome (Martin et al. 2016). Read 

groups were added to aligned sample reads after which the duplicate reads were marked 

and removed using picard-1.100. Indels were realigned and all realigned reads from all 

samples were merged into one file before SNP calling.  
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Genome analysis tool kit (GATK) version 2.7.2, UnifiedGenotyper 

(https://software.broadinstitute.org/gatk/documentation/) was used as the variant caller. 

First, all genotypes were considered as diploids and as such bi-allelic SNP (BA-SNP) 

were called. Second, the population was split and grouped according to ploidy level. The 

respective ploidy levels were set during SNP calling. Preliminary filtering of SNP was 

performed prior to output of variant call file (VCF). The filters used were QD < 2.0, FS 

> 60.0, MQ < 40 and Haplotypescore > 13.0. Further stringent filtering was done in R (R 

core team 2016) where SNP loci with quality score less than 98 and more than 50% of 

the banana genotypes having missing data were excluded.  Concordant SNP loci across 

all ploidy levels were selected to generate a file with SNP where allelic dosage had been 

accounted for. The remaining missing data were imputed with impute function in R and 

SNP converted into numerical data for input into genomic prediction models using a 

custom R-script. The description of how the script works can be accessed via the link:  

http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage_R_function.docx  

 

Comparison of genomic prediction models and the effect of field management and 

crop cycle on their performance  

 Bayesian models accounting for additive genetic effects (Bayesian Ridge 

Regression (BRR), Bayesian LASSO (BL), BayesA, BayesB and BayesC), and 

Reproducing kernel Hilbert space models accounting for non-additive genetic effects 

(RKHS_P, RKHS_M and RKHS_PM) were compared. All models were implemented in 

R-package BGLR (Pérez and de los Campos 2014) using 10807 BA-SNP markers. Since 

the training population consisted of many small families and genotypes of different ploidy 

levels, the genotypes in the phenotype and SNP files were completely randomized in the 

https://software.broadinstitute.org/gatk/documentation/
http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage_R_function.docx
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same order. The aim was to minimize the effect of family structure and ploidy level during 

cross validation.  

The phenotype data used were the average phenotypic observations per genotype 

per field. These were calculated using the function ‘aggregate’ provided in R-package 

plyr. The training population was divided into five groups and each group was used once 

as the testing (cross validation) set. The predictive ability of the model was determined 

as the average correlation between the predicted and observed phenotype of the testing 

sets from five cross validation. Across field management cross validation was done so 

that data from one field were used to generate the model using the training set and the 

predicted phenotypes of the genotypes in the testing set were correlated to the observed 

phenotypes in the second field.  

For all models, the priors for parameters such as shape, rate and counts were 

estimated from the data. However, for BayesB and BayesC models, the prior probability 

of a marker having a non-null effect on the phenotype (probIn value) was set at 0.05 and 

the degrees of freedom were set according to the available phenotype and genotype data. 

The genetic variance in all models was set at 0.5 since we did not calculate heritability of 

the traits. For every cross validation, 10000 iterations were run with a burnIn of 5000 and 

thin 10.  

The fifteen traits mentioned above were predicted with all models to determine 

the best genomic prediction model for each trait, or group of traits. The effect of using 

models generated with data from low input field management to predict performance of 

genotypes under high input management and vice versa (G × E effect) was also evaluated. 

 Next, the effect of crop cycle on trait prediction was evaluated using one of the 

best identified genomic prediction model.  Cross validation across and within crop cycles 

was done using the 10807 BA-SNP markers and the average phenotype per crop cycle 1 
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and crop cycle 2 of each field. Five cross validations were performed without overlap of 

genotypes between the training and testing set in each round. Only a few traits 

representing the trait categories were considered because of high correlation of traits 

within trait categories (Nyine et al. 2017).  They included plant girth at 100 cm from soil 

surface, index of non-spotted leaves, bunch mass, and fruit circumference. The total 

number of suckers was not analysed because this trait was scored only in crop cycle 1. 

 

Effect of allelic dosage on model performance 

The performance of BayesB, BRR, BL and RKHS_M models fitted with BA-SNP 

and AD-SNP markers was compared on the 15 traits. Predictions based on BA-SNP 

markers were used as the baseline for comparison. Equal number of SNP from same loci 

for both BA-SNP and AD-SNP were used. Combined phenotypic data from the two fields 

for the two crop cycles (environment averaged data) were used to calculate the mean 

phenotype of each individual genotype. In this cross-validation strategy, first, genotypes 

were completely randomized. A five-fold cross validation was performed using similar 

priors to determine the predictive ability of the model for the trait. Secondly, the 

performance of parents’ model versus progeny’s model was compared using BA-SNP 

and AD-SNP. Here, the training set consisted of either only parents (parents’ model), or 

progeny (progeny’s model). Thirdly, the population was divided into three groups 

consisting of diploids, triploids and tetraploids. The training set comprised of any two of 

the ploidy groups while the testing set consisted of genotypes from one ploidy level. Due 

to differences in population sizes under different ploidy level, we also used only triploids 

to compare the effect of accounting for allelic dosage. 

The effect of using averaged environment model was assessed based on AD-SNP 

to predict plant girth at 100 cm from soil surface, total number of suckers, index of non-
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spotted leaves, bunch mass and fruit circumference under low and high input fields. The 

percentage difference in prediction (PDP) between low and high input fields was 

calculated in reference to the prediction in the low input field management.  

 

The accuracy of genomic prediction within the training population 

The GEBV obtained from the models with best and worst predictive abilities for 

plant girth, total number of suckers, index of non-spotted leaves, bunch mass and fruit 

circumference were used to rank the genotypes. The top 100 genotypes were compared 

with the best 100 genotypes ranked on the basis of the environment averaged phenotypic 

data. The number of genotypes out of 100 captured by both GEBV and phenotypic data 

was reported as the estimated accuracy of genomic prediction within the training 

population.  For this analysis, the best genomic prediction model identified above was 

used.  

 

Results 

Genotyping 

 The discovery of SNP markers from GBS reads for the training population was 

based on the latest publicly available version of the double haploid Musa acuminata cv. 

Pahang reference genome sequence (Martin et al. 2016). In order to account for allelic 

dosage in genotypes of different ploidy, a workflow was developed for the analysis of 

sequence data and GATK, UnifiedGenotyper was used as SNP caller (Supplementary 

Figure S1). It produced 52076 BA-SNP after pre-filtering. After further stringent filtering 

in R (R core team 2016), 10807 BA-SNP markers that were polymorphic with a minimum 

minor allele frequency of 0.01 were retained. These were distributed on 11 

pseudomolecules as well as on unanchored scaffolds of the banana reference genome 
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(Fig. 3). The percentage of imputed missing genotypes was 16 %. Accounting for allelic 

dosage within the ploidy groups (diploids, triploids and tetraploids) reduced the number 

of SNP markers to 5574.  

 

Comparison of genomic prediction models and the effect of field management and 

crop cycle on their performance  

 The best genomic prediction model for different traits was selected based on 

congruity of predictive ability results from across field cross validation using BA-SNP 

markers. The predictive ability of all models varied across traits (Table 1; Supplementary 

Table 2). For 12 out of 15 traits, genomic prediction models that account for additive 

genetic effects gave the highest predictions ranging from 0.2 to 0.72. These were the 

correlations between the predicted and observed phenotypes for the various traits. 

Reproducing kernel Hilbert space (RKHS) model combining both pedigree and marker 

information (RKHS_PM) gave the highest predictions ranging from 0.24 to 0.49 for 3 out 

of 15 traits and these were the days to fruit maturity, height of tallest sucker at flowering 

and height of tallest sucker at harvesting. BayesB and BayesC models predicted equally 

well and better than other models for fruit filling and fruit bunch traits. For example, the 

predictions of all fruit filling traits by both models ranged from 0.65 to 0.72.  For plant 

stature, suckering behaviour and black leaf streak resistance traits, BayesB and BayesC 

models were not the best, but either had the same predictive ability, or were lower by 5 – 

13 % in prediction as compared to other models. The trend of prediction starting from the 

highest to the lowest trait category was fruit filling, fruit bunch, plant stature, black leaf 

streak and suckering behaviour. In general, genomic prediction models fitted with 

phenotypic data from genomic selection trial 1 (GS1) under-predicted the performance of 

genotypes in genomic selection trial 2 (GS2), and vice-versa (Fig. 4), but this did not 
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affect the trend of prediction across traits. Little difference in prediction was observed 

across all models for traits within the same category.  

The performance of RKHS model fitted with marker data (RKHS_M) was 

comparable to BRR, BL and BayesA models fitted with marker data. RKHS model fitted 

with pedigree information alone (RKHS_P) had the least predictive ability that ranged 

from 0.12 to 0.5 (Supplementary Table 2). There was a 4 – 29% loss in predictive ability 

(LIP) of most traits when marker and pedigree information were combined in the 

RKHS_PM model. However, the same model gave a 4 – 21% gain in prediction for plant 

height, height of tallest sucker at flowering, height of tallest sucker at harvesting and days 

to fruit maturity.  

. The effect of crop cycle on trait prediction was tested with BayesB model using 

BA-SNP markers, because this model either out-performed other models, or performed 

equally well as noted in Table 1; Supplementary Table 2. The cross-validation strategies 

used were (a) within crop cycle cross validation for which both the training and testing 

sets were from the same crop cycle and (b) across crop cycle cross validation where the 

training and testing sets were selected from different crop cycles within the same field. 

The predictive ability of BayesB model fitted with crop cycle 1, or crop cycle 2 data in 

both low input and high input fields yielded mixed results when within and across crop 

cycle cross validations were performed for different traits (Table 2). Predictive ability of 

the model for fruit circumference and bunch mass ranged from 0.58 to 0.73, whilst for 

plant girth and index of non-spotted leaves ranged from 0.39 to 0.61 and 0.26 to 0.44, 

respectively, in both fields and crop cycles. Less than 2% variation in prediction across 

and within crop cycles was observed in both bunch mass and fruit circumference. The 

highest difference of 20% in prediction across (0.28) and within (0.35) crop cycle was 

recorded in GS2 for index of non-spotted leaves when crop cycle 2 data were used to fit 

the model.   
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Effect of allelic dosage 

The effect of AD-SNP on predictive ability of the best genomic prediction models was 

evaluated for 15 traits in comparison to predictions based on BA-SNP markers. For both 

BA-SNP and AD-SNP, 5574 SNP markers from the same loci and combined phenotypic 

data from the two fields for the two crop cycles (environment averaged data) were used 

to fit the models. First, genotypes were completely randomized to minimize the effect of 

family structure and ploidy. Second, the training set consisted of either only parents 

(parents’ model), or progeny (progeny’s model). Third, the population was divided into 

diploids, triploids and tetraploids. The training set comprised of any two of the ploidy 

groups while the testing set consisted of genotypes from one ploidy level. Lastly, only 

triploids were considered during cross validation since 85% of genotypes in the training 

population were triploids. The aim was to understand what traits and which ploidy level 

were mostly affected by allelic dosage when implementing genomic predictions. 

The results of the comparison of the effect of allelic dosage on performance of 

BayesB, BRR, BL and RKHS_M models are summarized in Table 3. When AD-SNP 

were used to fit the models, predictive ability of all models across all traits was reduced 

by 15% on average as compared to when BA-SNP markers were used. However, when 

only triploids were considered during the cross validation, predictive ability for fruit 

circumference fell by 10% from 0.76 to 0.68, while for bunch mass it decreased by 5% 

from 0.62 to 0.59. The highest loss in prediction (PLP) of 24 – 44% was observed in 

suckering behaviour traits when AD-SNP markers were used to fit model using genotypes 

from all ploidy levels. However, the trend of prediction within and across trait categories 

did not change by accounting for allelic dosage. Fruit filling traits were the best predicted 

with the highest predictive ability of 0.68 for pulp diameter. BayesB model maintained 

its superior prediction accuracy over other models, especially for fruit filling and fruit 

bunch traits. 
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Although the number of SNP markers used in this prediction was reduced to 5574 

because we wanted to eliminate the bias in predictions due to variable number and 

location of BA-SNP and AD-SNP, the environment (field management) averaged models 

with BA-SNP markers gave higher predictions than those obtained with across field cross 

validation with 10807 SNP markers for all traits. The highest predictive ability recorded 

was 0.75 for fruit filling traits with the BayesB model (Table 3).  

 When only parental data were used to fit BayesB model (parents’ model), the 

predictive ability of traits within the progeny ranged from 0.13 to 0.59 for BA-SNP and 

from -0.15 to 0.33 for AD-SNP (Supplementary Table 3). The LIP due to accounting for 

allelic dosage was 63% on average (36 – 179 %). Similarly, when progeny data were used 

to fit BayesB model (progeny’s model), the predictive ability of traits within parents 

ranged from 0.39 to 0.86 with BA-SNP and from -0.03 to 0.77 with AD-SNP markers. 

The LIP due to accounting for allelic dosage was 35% on average (1.5 – 107%). The 

highest predictive value obtained with BayesB model fitted with BA-SNP was 0.86 for 

number of hands. This prediction dropped by nearly 50% (0.48) when AD-SNP markers 

were used. Prediction accuracy of the same trait in progeny using parents’ model was 

0.45 with BA-SNP and 0.03 with AD-SNP markers. The prediction of bunch mass in the 

progeny using a parents’ model with AD-SNP was 0.17 while the prediction of the same 

trait in parents using a progeny’s model reduced to 0.08. 

Since allele dosage varies with ploidy level, cross validation across ploidy levels 

was carried out. Genotypes from two ploidy levels were used to train the model and only 

genotypes of same ploidy level were included in the testing set during cross validation. 

Accounting for allelic dosage positively increased the predictive ability of all fruit filling 

traits in tetraploids with BayesB model, but the results from other trait categories varied 

greatly (Supplementary Table 4). For example, prediction of pulp diameter increased 

from -0.39 to 0.60, fruit diameter increased from -0.45 to 0.53 and fruit circumference 
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increased from -0.15 to 0.35. BayesB model fitted with triploid and tetraploid data, and 

BA-SNP gave the predictions ranging from 0.32 to 0.86 for traits among diploids. 

Tetraploids and diploids were the least represented in the training population (47 out of 

307 genotypes, or 15%) and of which the majority were parents. When their data were 

used to fit the model to predict traits in triploids the prediction varied from 0.20 to 0.54 

and from -0.06 to 0.11 with BA-SNP and AD-SNP, respectively.  

When BayesB model was fitted with the environment averaged data (including all 

ploidy levels) and AD-SNP to predict the traits under low and high input fields, there was 

a 2-8% increase in predictive ability under high input field relative to low input field for 

plant girth, bunch mass and fruit circumference (Table 4). However, for total number of 

suckers and index of non-spotted leaves, the predictions reduced by 47% and 15%, 

respectively.  

 

The accuracy of genomic prediction within the training population  

The first 100 genotypes with the highest GEBV and the first 100 genotypes with 

the highest environment averaged phenotypic data were compared (Fig. 5). The GEBV 

used were obtained from BayesB model with best and worst predictive abilities based on 

AD-SNP markers. The number of genotypes out of 100 captured by both GEBV and 

phenotypic data was reported as the estimated accuracy of genomic prediction within the 

training population for the trait. The accuracy of prediction ranged from 76 to 84% for all 

the traits whereas the prediction values ranged from 0.04 to 0.76. Models that gave high 

predictive ability values had also the highest prediction accuracy.  
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Discussion 

Genotyping 

 Genomic selection as a form of marker assisted selection has been investigated in 

a range of plant species including, for example, maize and wheat (Heffner et al. 2011; 

Crossa et al. 2014; Crossa et al. 2016), white spruce (Beaulieu et al. 2014), sugar beet 

(Würschum et al. 2013), apples (Kumar et al. 2012), strawberries (Gezan et al. 2017) and 

rice (Onogi et al. 2016). In these experiments, genotypes of same ploidy level constituted 

the training population. The present study on banana is unique in this respect as three 

ploidy levels were represented in the training population. Within the three ploidy levels, 

both parents and progeny were represented in varying proportions. The hybrids in the 

training population arose from 77 cross combinations, mainly involving crosses between 

tetraploids and diploids (Nyine et al. 2017).  Innovative approaches in SNP calling, 

including custom R-script had to be adopted for such an unconventional population 

(Supplementary Figure 2). The script removes loci with monomorphic SNP, eliminates 

loci with more than two alternative SNP alleles and converts the SNP file into a numerical 

format while accounting for allelic dosage, and is applicable to any polyploid plant 

species. Bowtie2 was used as the sequence alignment tool while GATK, 

UnifiedGenotyper was the variant caller. However, as indicated by Clevenger et al. 

(2015), optimal alignment programs and variant callers may vary among species.  

 GATK (https://software.broadinstitute.org/gatk/documentation/) in particular is 

useful when handling polyploid species. It allows setting the ploidy level and reduces 

false positive SNP calls arising from frameshifts by running INDEL realignment step 

(Clevenger et al. 2015). When Picard tools 

(https://sourceforge.net/projects/picard/files/picard-tools/1.100/) are used prior to SNP 

calling, normalization of sequence reads is possible by marking and removing duplicate 

reads. This allows regions with low reads coverage, but carrying SNP of interest to be 

https://software.broadinstitute.org/gatk/documentation/
https://sourceforge.net/projects/picard/files/picard-tools/1.100/
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included in the genotype data. Picard tools also allow merging of aligned sample reads 

by addition of read groups which help in separating genotypes after SNP calling. 

 

What is the best genomic prediction model for each trait or group of traits?  

 Different genomic prediction models were compared in this work in terms of their 

predictive ability, or accuracy for different traits as noted in Table 1 and Supplementary 

Table 2. We compared the performance of models that account for additive genetic effects 

and those that account for non-additive genetic effects. A good performance of models 

that account for additive genetic effects suggested that a large proportion of phenotypic 

variation observed in the training population was due to additive genetic effects. Additive 

genetic effect models BayesB and BayesC performed better than or equally well as other 

models. These models perform both shrinkage and variable selection on markers to 

include in the model (Desta and Ortiz 2014). The prior probability of a marker having a 

non-null effect (π) was set at 0.05 in both models because it gave the highest predictive 

ability values as compared to higher prior settings. It is likely that the same markers were 

selected and included in both models thus yielding closely related results. 

Our results agree with other studies, which indicate that models that perform 

specific shrinkage and variable selection give better predictive ability values. For 

example, Crossa et al. (2010) showed that a BL model that shares some characteristics 

with BayesB outperformed BLUP, which assumes equal variance for each marker. 

Similarly, Clark et al. (2011) reported the superiority of BayesB model over genomic 

BLUP (GBLUP). They argued that the superiority was highly dependent on the presence 

of large QTL effects. If this argument is correct then it is likely that even in banana, fruit 

filling traits could be controlled by large effect QTL that were selected by BayesB model 

in all cross-validations. However, this remains to be proved by QTL mapping and 
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genome-wide association studies that are out of the scope of this study. Tagging of loci 

controlling fruit filling with DNA markers and selecting for favourable alleles should be 

also considered. Fruit filling is a bunch mass component that reflects the sink capacity of 

a fruit bunch. It was treated separately from other bunch mass components to better 

describe the proportion of edible part of the fruit. Variation in performance of models that 

perform shrinkage and variable selection has also been reported. For example, in Loblolly 

pine (Pinus taeda L.), BayesCπ and BayesA had better prediction of fusiform rust disease-

resistance traits than BL (Resende Jr. et al. 2012) 

The predictive ability of all models varied across traits. Similar predictive values 

for traits within the same category confirmed the findings of Nyine et al. (2017) who 

reported a high correlation between these traits and recommended that only traits easier 

to phenotype should be considered for genomic predictions. The difference in model 

performance between trait categories   suggests that variation in trait architecture, number 

of QTL controlling the trait and linkage disequilibrium between markers and QTL 

influence the performance of the models (Clark et al. 2011).  

RKHS_PM model, which accounts for non-additive genetic effects yielded mixed 

prediction results. Whilst some traits had a slight increase in prediction, a majority 

showed loss in predictive ability (Table 1; Supplementary Table 2). Previous studies 

(Crossa et al. 2010) indicated minor improvement in trait prediction in wheat and maize 

when marker and pedigree information were included in the model. The contradictions 

could be attributed to the training population structure. Our training population consisted 

of 77 subfamilies (cross combinations) of varying sizes with diverse pedigree background 

(Nyine et al. 2017). This suggests that when the population consists of many subfamilies, 

the relationship by pedigree becomes less important. This is reflected by the poor 

performance of RKHS_P model, which gave the least prediction accuracy for all traits 

(Supplementary Table 2). A similar trend was observed by Beaulieu et al. (Beaulieu et al. 
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2014). Hence, the estimates of allele distribution within such a population is better 

performed with marker data, while addition of pedigree information distorts the 

relationship between the genotypes. Zhong et al. (2009) also highlighted that knowledge 

of pedigree is less informative in populations where the average genetic relationship is 

low and homogeneity is high. 

  

What is the effect of G × E on model predictions? 

We used a very conservative approach in determining the best genomic prediction 

model by carrying out across field (environment) cross validations. The purpose was to 

understand the effect of genotype by field management (G × E) interaction on the model 

performance. The results showed that models fitted with GS1 phenotype data 

underpredicted the phenotypic expression of genotypes in GS2 while the models fitted 

with GS2 phenotype data overpredicted genotypes in GS1 (Fig. 4).  However, the trend 

of prediction did not change (Table 1). A similar approach was used by Ly et al. (2013), 

who observed that across environment cross validations resulted into lower prediction 

accuracies. However, our prediction values were substantially higher as compared to 

those reported in other crops.  

Trait over-prediction in GS1 with models fitted with GS2 data and vice versa 

indicated a variation in genotype response to environment that influenced the training 

population trait mean and the predictive ability of the genomic prediction models (Crossa 

et al. 2016). Although it is possible to use phenotype data from any of the field 

management conditions to predict genotypes that have the potential to perform well in 

other field management conditions, the predicted and the actual observed phenotype may 

differ for a single genotype. For example, plants that had poor fruit filling characteristics 

under low input field management did not fill under high input field management, as well. 



24 
 

However, for genotypes that fill their fruits, there was an increase in fruit size depending 

on the amount of available nutrients and soil moisture in the field. A similar trend was 

reported in maize flowering where QTL were consistent across environments and less 

affected by environment interaction (Buckler et al. 2009). This means that genomic 

prediction models could be used in ‘negative selection’ to discriminate the poor fruit 

filling hybrids from those with potential of fruit filling at an early stage.  

In banana breeding, most triploid hybrids are sterile. The application of genomic 

prediction in its strict sense of selecting best parents for further crossing (Meuwissen et 

al 2001; Gorddard and Hayes 2007) may not be realistic, unless the focus is only on 

diploid and tetraploid improvement. Since the prediction models give both GEBV and 

predicted phenotype (Pérez and de los Campos 2014), these two parameters can be used 

to eliminate triploid hybrids that are likely to be of no value. Crossa et al. (2014) also 

proposed that another application of genomic prediction was to predict the genetic values 

of individuals for potential release as cultivars. Therefore, if the prediction accuracy 

remains high during the breeding phase, then breeders could save time, space and money 

by excluding 90% of hybrids from phenotyping (Fig. 2). In order to achieve this, breeders 

have to set priority order of traits, which could serve as the ‘selection index’ for promising 

candidate cultivars (i.e., within triploids hybrids) and future parental clones (within 

diploid and tetraploid hybrids). Also, family based selection should be done to reduce 

future inbreeding and maximize genetic diversity to ensure increase in genetic gain 

(Jannink et al. 2010).  

Although crop cycle was shown to influence variation in fruit filling, fruit bunch 

and plant stature, and no effect on black leaf streak traits (Nyine et al. 2017), the 

predictions within and across crop cycle 1 and crop cycle 2 did not vary much for fruit 

filling and fruit bunch traits. This is because fruit filling and fruit bunch traits increase in 

crop cycle 2 relative to crop cycle 1 (Tushemereirwe et al. 2015). However, for black leaf 
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streak resistance, resistant hybrids remain resistant across crop cycles and field 

management.  Variation may be observed among susceptible hybrids depending on the 

spore density in the field (Tushemereirwe 1996). Disease expression also depends on 

vigour of the plant due to available nutrients, seasonal changes and relative humidity in 

the field (Tushemereirwe 1996). This probably explains the variation observed in the 

prediction within and across crop cycle for the index of non-spotted leaves.  

 In bananas, suckering behaviour traits had the lowest prediction accuracy. One 

possible explanation is that there was poor representation of markers linked to the QTL 

controlling these traits. Secondly, scoring total number of suckers at crop cycle 1 from a 

trial established with suckers, seems to result in biased phenotype data. Two types of 

suckers are used as planting materials, the sword and maiden suckers. Most maiden 

suckers are much closer to flowering than sword suckers (Ortiz and Vuylsteke 1994) and 

tend to direct most of resources towards the initiation of the inflorescence, and less to the 

development of lateral buds (future suckers). On the contrary, sword suckers commit most 

of their resources to lateral bud development. Hence, when a field is established with 

suckers, the variation in physiological age of suckers likely impacts sucker emergence 

that causes bias in total number of suckers produced by a genotype at first crop cycle.   

When environment averaged models were used to predict the performance of 

genotypes in a particular environment, the predictions were high (0.75 for fruit filling 

traits) despite the lower number of SNP markers (Table 3). This indicated that 

incorporation of data from many environments could make the models more robust 

(Burgueño et al. 2012). As discussed by Burgueño et al. (2012), breeders either evaluate 

new breeding lines so that they can select the best to advance, or evaluate the performance 

stability of new, or old lines in a new environment. In each of these cases, the model 

should be robust enough to give accurate predictions. Hence, using data from multi-

environment trials and crop cycles to fit the model has the advantage of incorporating 
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information due to genetic relationship and the interaction between genotype and 

environment (Crossa et al. 2014).  

Traits that are stable across environments are much easier to predict using data 

from one environment. However, if there is a proportional change (collinearity) in the 

trait expression within an environment across genotypes, then selection based on 

predictions is likely to be efficient (Burgueño et al. 2012). Plant environments vary and 

may refer to geographical locations with different weather and climatic conditions, 

difference in seasons within a same location and difference in soil conditions based on 

the different agronomic practices used.  As perennial plants, bananas suffer the 

consequences of nutrient deficiency and soil moisture variation across seasons and 

locations depending on field management practices (Ndabamenye et al. 2012; Taulya 

2015). These factors influence phenotypic expression of traits and are likely to affect the 

predictive ability of prediction models. Although we considered field management and 

crop cycle the major environment co-variables, phenotyping of the current training 

population in a different geographical location is ongoing. Once the data are available, 

they will be used to update the models to the benefit of the breeding program. 

 

Bi-allelic SNPs vs. allele dosage SNPs  

 Whereas many factors have been reported to influence the accuracy of genomic 

predictions (Crossa et al. 2014), our results showed that allelic dosage was another 

important factor to consider when conducting predictions in multi-ploidy populations 

(Supplementary Table 4). The negative correlations observed indicated a weak 

relationship between the training and testing sets (Crossa et al. 2016). Clearly, not all 

traits were affected equally by allelic dosage (Supplementary Table 4) and the effect of 

allelic dosage becomes more important as the ploidy level increases. This suggests that 
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additive genetic effects vary across traits. It is likely that the effect of deleterious recessive 

alleles is masked by the dominant alleles and the more copies of masking alleles the better 

the effect (Gu et al. 2003). However, for traits controlled by exclusively recessive alleles, 

the effect of allelic dosage may be different. In cassava, a large proportion of deleterious 

alleles arising from mutations have not been eliminated by breeding due to limited 

recombination, but the maintenance of cassava yield through breeding has been attributed 

to masking of most damaging mutations (Ramu et al. 2017).  

Predictions within multi-family population was shown by Heffner et al. (2011) to 

be accurate and cost effective. It is likely that genomic prediction models trained only on 

diploid segregating populations would be less efficient in prediction of traits among 

triploid banana hybrids, yet promising candidate cultivars are selected in this ploidy level. 

Secondly, allelic dosage has to be accounted for in the marker data especially when 

predicting fruit filling in tetraploids although use of non-informative models that assume 

diploid state of all genotypes still gives acceptable predictions.    

  To ensure that good hybrids are not left out, selection based on GEBV should be 

done with prior knowledge of ploidy level in multi-ploidy populations. Bunch mass and 

general phenology in bananas tend to increase with increase in ploidy level although in 

banana hybrids, the trend is not always uniform due to positive and negative heterosis 

(Tenkouano 2000). Since banana breeding involves crossing parents of different ploidy 

levels, prediction of hybrid performance based on parental phenotype data is less accurate 

due to heterosis. That is why the parents’ model prediction accuracies were low. Although 

we did not measure heterosis in this study, the results of selection differential (S) and 

response to selection (R) reported by Nyine et al. (2017) show that it exists in this training 

population.  
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  When the progeny’s model was used to predict the parental traits, the predictions 

were appreciably high (Supplementary Table 3). This indicated that a large size of the 

training set relative to the testing set improves prediction (Jannink et al. 2010; Clark et al. 

2011; Crossa et al. 2014). The lesson learned is that in bananas, when the training 

population is made up of many diverse hybrids, the segregation of parental alleles is 

observed. Most of the additive genetic effects, heterosis, dominance and epistasis that 

control the phenotype are captured in the model when all these phenotypic variants are 

available (Lorenz et al. 2011). These results suggest that for plant species with small 

effective breeding population sizes like banana that show heterosis, increasing the number 

of progeny from several parental crosses in the training population could improve the 

predictive ability of the models for future hybrids as compared to using only parental 

clones.  

  

The accuracy of genomic prediction 

  The prediction accuracy within the training population based on GEBV was above 

75% even with models that had low predictive abilities. The accuracy of genomic 

prediction model is determined by the correlation between GEBV and the observed 

phenotype, or the correlation between predicted phenotype and observed phenotype 

(Jannink et al. 2010; Lorenz et al. 2011). This shows the proportion of genetic variance 

explained by marker data. It is therefore not surprising that even with low correlations, 

the accuracy of prediction can be high. Beaulieu et al. (2014) reported that with GEBV 

accuracies between 0.33 and 0.44, they were able to achieve 90% of traditionally 

estimated breeding values during validation. Similarly, Heffner et al. (2011) reported a 

95% prediction accuracy of genomic prediction compared to phenotypic selection in a 

multi-family wheat population even when the predictive values ranged from 0.22 to 0.76.  
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  The true accuracy is estimated at the validation stage using the validation 

population. It depends on the size of the training population, heritability of the trait and 

the estimated number of effects (Lorenz et al. 2011). Sometimes, it is not possible to 

explain all the genetic variance due to missing marker data, or failure to capture other 

QTL affecting the trait. This is further confounded by uncontrolled environmental 

variable (Buckler et al. 2009; Burgueño et al. 2012). That is why genomic selection is 

considered less accurate than phenotypic selection but its power lies in increased selection 

intensity within a much shorter time hence increasing the genetic gain per unit time and 

cost (Desta and Ortiz 2014; Lorenz et al. 2011).  Our results suggest that even with low 

predictive values, the accuracy of prediction within the training population was high. It 

remains to be verified at the validation stage if the accuracy remains high. Given the long 

selection cycle observed in banana as depicted in Fig. 2, prediction accuracies above 70% 

could result in accelerated selection efficiency at reduced cost as compared to phenotypic 

selection.  

 

Conclusion and practical implications 

  Polyploid breeding programs ought to use genomic prediction models that have 

been fitted with data from genotypes of all ploidy levels otherwise genomic selection will 

face similar limitations as other MAS techniques, which focus on bi-parental populations 

for QTL and marker discovery. Although BA-SNP markers gave better prediction 

accuracies we recommend the use of AD-SNP markers to ensure that traits that depend 

on the level of heterozygosity for maximum expression are predicted well regardless of 

the genotype ploidy levels. To generate prediction models for each ploidy level is 

expensive in the initial stages of genomic selection, but as the training population keeps 

growing it becomes possible.  
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  In order to minimize costs, the current models based on multi-ploidy population 

should be validated and used with the following recommendations: (i) unlike other 

breeding programs where genomic prediction is used entirely for prediction of best 

parents for further crossing, in banana, selection among triploids should aim at identifying 

promising candidate cultivars because a majority of them are sterile and breeding clones 

should be selected from diploids and tetraploids, (ii) ‘selection index’ is required for 

efficient selection of new hybrids, i.e. the priority order of traits should be set for 

promising cultivars and breeding clones, (iii) family-based (cross combination) selection 

should be considered to avoid reducing genetic diversity, (iv) the lowest GEBV should 

be targeted for plant height, or else a ratio of plant height to plant girth at 100 cm from 

soil surface should be used. In the light of genomic selection, a potential area of research 

would be to investigate the level of fertility in triploid banana hybrids so that they are also 

selected as parents. This will allow ‘progressive’ breeding to be practiced in banana since 

some traits are already fixed in the triploids.  
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Figure captions 

Fig. 1: Conventional crossbreeding of East African Highland bananas starts with crossing 

triploid parthenocarpic landraces with a wild, seeded diploid accession or a diploid 

cultivar showing fruit parthenocarpy. This cross gives diploids, triploids and tetraploid 

hybrids. Tetraploids are selected and crossed with improved diploid hybrids selected from 

inter-diploid crosses. The resulting secondary triploids are evaluated, selected and 

advanced as promising improved genotypes aiming at new cultivars. The diploid and 

triploid (if fertile) hybrids can be further improved by crossing with other wild or 

improved diploids. 

Fig. 2: Approaches to hybrid selection in banana breeding program. (A) the classical 

phenotypic selection of banana hybrids and (B) integrated genomic selection and 

phenotypic selection approach being investigated. 

Fig. 3: Distribution of filtered SNP markers on 11 pseudomolecules of the double haploid 

of M. acuminata cv. Pahang (Martin et al., 2016). Q represents the unanchored scaffolds.  

Fig. 4: Prediction of plant height at flowering (PHF) using a Bayesian ridge regression 

model fitted with phenotype data from low input field (A) and high input field (B). Where 

A, shows under-prediction and B, shows over prediction of PHF. The black and magenta 

circles represent genotypes in the training and testing sets, respectively. 

Fig. 5: Accuracy of genomic prediction in the training population. (A) Percentage of 

genotypes selected by both GEBV and phenotypic data within the first best ranked 100 

genotypes. (B) Correlations of the best and worst BayesB models used to generate GEBV. 

Where, PG is plant girth at 100 cm from soil surface, TS is total number of suckers, INSL 

is index of non-spotted leaves, BM is bunch mass, FC is fruit circumference and CV is 

cross validation. 
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Supplementary information captions 

Supplementary Table 1: List of banana genotypes used in genomic predictions 

Supplementary Table 2: Comparison of average correlation for five-fold cross validations 

between the predicted and observed phenotypes across all models fitted with data from 

either low input (GS1) or high input (GS2) fields and 10807 bi-allelic SNP markers  

Supplementary Table 3: Comparison of predictive ability of BayesB model fitted with 

parents’ data and progeny’s data using bi-allelic and allele dosage SNP markers 

Supplementary Table 4: Effect of ploidy level and allelic dosage on the predictive ability 

of BayesB model fitted with environment averaged phenotype data 

Supplementary Figure 1: Workflow used to analyse the genotyping by sequencing (GBS) 

reads to generate SNP marker data used in genomic predictions 

 



Table 1. Comparison of average correlation for five-fold cross validations between the predicted and observed phenotypes across models fitted with data from 

either low input (GS1) or high input (GS2) fields and 10807 bi-allelic SNP markers 

Trait category Trait BRR BayesB BayesC RKHS_M RKHS_PM 

    GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 

Plant stature Plant height 0.54 0.46 0.54 0.44 0.54 0.45 0.55 0.44 0.54 0.48 

 
Plant girth 0.60 0.52 0.60 0.52 0.60 0.51 0.60 0.51 0.55 0.50 

Suckering behaviour Total number of suckers 0.16 0.17 0.16 0.19 0.15 0.19 0.17 0.18 0.16 0.17 

 
Height of tallest sucker at flowering 0.28 0.18 0.27 0.20 0.26 0.2 0.28 0.19 0.30* 0.24* 

 
Height of tallest sucker at harvesting 0.27 0.26 0.28 0.24 0.27 0.25 0.26 0.26 0.29* 0.32* 

Black leaf streak Number of standing leaves at flowering 0.36 0.42 0.43 0.40 0.36 0.41 0.37 0.41 0.29 0.34 

 
Index of non-spotted leaves 0.35 0.42 0.34 0.43 0.34 0.43 0.35 0.42 0.32 0.36 

Fruit bunch Days to fruit maturity 0.47 0.42 0.47 0.42 0.46 0.42 0.47 0.42 0.49* 0.44* 

 
Bunch mass 0.63 0.61 0.64* 0.62* 0.64* 0.62* 0.61 0.61 0.52 0.55 

 
Number of hands 0.60* 0.62* 0.60* 0.62* 0.59 0.62 0.59 0.62 0.48 0.53 

 
Number of fruits 0.47 0.51 0.47* 0.52* 0.47* 0.52* 0.45 0.52 0.35 0.45 

Fruit filling Fruit length 0.65 0.64 0.67* 0.65* 0.67* 0.65* 0.64 0.64 0.59 0.59 

 
Fruit circumference 0.67 0.66 0.70* 0.69* 0.70* 0.69* 0.65 0.66 0.57 0.60 

 
Fruit diameter 0.67 0.63 0.70* 0.71* 0.70* 0.71* 0.65 0.67 0.57 0.59 

 
Pulp diameter 0.67 0.68 0.70* 0.72* 0.70* 0.72* 0.65 0.67 0.57 0.6 

*Highest predictive value observed in both GS1 and GS2 for a trait using same model type.   The values under GS1 column are the correlations between predicted and 

observed phenotype (predictive ability) in GS2 when GS1 data were used to fit the model and vice versa for GS2 column. 



Table 2. Average predictive ability of BayesB model fitted with either crop cycle 1, or crop cycl 2 phenotype data from low (GS1) and high (GS2) input field 

management using bi-allelic SNP markers to predict traits across and within crop cycles  

 

  
Low input field management (GS1) High input field management (GS2) 

  
Cycle 1 model Cycle 2 model Cycle 1 model Cycle 2 model 

Trait category Trait Across Within Across Within Across Within Across Within 

Plant stature Plant girth 0.39 0.55 0.51 0.44 0.54 0.59 0.61 0.57 

Black leaf streak Index of non-spotted leaves 0.42 0.44 0.40 0.41 0.30 0.26 0.28 0.35 

Fruit bunch Bunch mass 0.58 0.60 0.60 0.59 0.63 0.65 0.65 0.62 

Fruit filling Fruit circumference 0.72 0.71 0.72 0.72 0.73 0.73 0.71 0.72 



Table 3. Effect of accounting for allelic dosage on the predictive ability of genomic prediction models using environment averaged phenotype data 

 

 

 

 

 

 

 

  
Bi-allelic SNP Allele dosage SNP 

Trait category Trait BRR BayesB BL RKHS_M BRR BayesB BL RKHS_M 

Plant stature Plant height 0.54 0.53 0.52 0.53 0.46 0.45 0.44 0.45 
 

Plant girth 0.53 0.53 0.52 0.52 0.48 0.47 0.47 0.48 

Suckering behaviour Total number of suckers 0.32 0.29 0.33 0.31 0.21 0.16 0.21 0.21 
 

Height of tallest sucker at flowering 0.37 0.34 0.37 0.38 0.27 0.26 0.27 0.28 
 

Height of tallest sucker at harvesting 0.35 0.33 0.34 0.35 0.24 0.23 0.23 0.25 

Black leaf streak Number of standing leaves at flowering 0.49 0.48 0.48 0.48 0.48 0.48 0.48 0.49 
 

Index of non-spotted leaves 0.58 0.59 0.58 0.58 0.53 0.52 0.53 0.53 

Fruit bunch Days to fruit maturity 0.53 0.54 0.53 0.53 0.44 0.43 0.44 0.44 
 

Bunch mass 0.61 0.62 0.61 0.61 0.54 0.56 0.54 0.54 
 

Number of hands 0.63 0.62 0.62 0.63 0.56 0.56 0.56 0.56 
 

Number of fruits 0.49 0.49 0.48 0.50 0.43 0.42 0.42 0.43 

Fruit filling Fruit length 0.69 0.70 0.69 0.69 0.60 0.64 0.60 0.59 
 

Fruit circumference 0.67 0.75 0.68 0.66 0.59 0.66 0.60 0.59 
 

Fruit diameter 0.67 0.75 0.68 0.66 0.60 0.67 0.62 0.60 
 

Pulp diameter 0.68 0.75 0.69 0.67 0.61 0.68 0.63 0.61 



Table 4. Performance of BayesB model fitted with average phenotype data for all fields (environments) and AD-SNP markers for predictions of five traits representing 

the trait categories within low and high input fields 

Trait category Trait Low input field (GS1) High input field (GS2) PDP 

Plant stature Plant girth 0.48 0.52 8.3 

Suckering behaviour Total number of suckers 0.15 0.08 -46.7 

Black leaf streak Index of non-spotted leaves 0.39 0.33 -15.4 

Fruit bunch Bunch mass 0.56 0.57 1.8 

Fruit filling Fruit circumference 0.66 0.69 4.5 













Supplementary Table 2: Comparison of average correlation for five-fold cross validations between the predicted and observed phenotypes across all models fitted 

with data from either low input (GS1) or high input (GS2) fields and 10807 bi-allelic SNP markers 
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Trait 

category Traits BRR BL BayesA BayesB BayesC RKHS_P RKHS_M RKHS_PM 

    GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 

Plant 

stature Plant height 0.54 0.46 0.55 0.45 0.54 0.45 0.54 0.44 0.54 0.45 0.42 0.40 0.55 0.44 0.54 0.48 

 Plant girth 0.60 0.52 0.6 0.51 0.6 0.51 0.60 0.52 0.60 0.51 0.44 0.40 0.60 0.51 0.55 0.50 

Suckering 

behaviour Total number of suckers 0.16 0.17 0.17 0.20 0.17 0.20 0.16 0.19 0.15 0.19 0.12 0.12 0.17 0.18 0.16 0.17 

 

Height of tallest sucker 

at flowering 0.28 0.18 0.30 0.20 0.28 0.18 0.27 0.20 0.26 0.20 0.27 0.24 0.28 0.19 0.30 0.24 

 

Height of tallest sucker 

at harvesting 0.27 0.26 0.26 0.28 0.28 0.25 0.28 0.24 0.27 0.25 0.28 0.29 0.26 0.26 0.29 0.32 

Black leaf 

streak 

Number of standing 

leaves at flowering 0.36 0.42 0.37 0.40 0.37 0.42 0.43 0.40 0.36 0.41 0.17 0.19 0.37 0.41 0.29 0.34 

 

Index of non-spotted 

leaves 0.35 0.42 0.35 0.42 0.34 0.43 0.34 0.43 0.34 0.43 0.22 0.22 0.35 0.42 0.32 0.36 

Fruit bunch Days to fruit maturity 0.47 0.42 0.47 0.42 0.47 0.42 0.47 0.42 0.46 0.42 0.44 0.41 0.47 0.42 0.49 0.44 

 Bunch mass 0.63 0.61 0.62 0.61 0.62 0.62 0.64 0.62 0.64 0.62 0.41 0.43 0.61 0.61 0.52 0.55 

 Number of hands 0.60 0.62 0.59 0.62 0.59 0.63 0.60 0.62 0.59 0.62 0.34 0.39 0.59 0.62 0.48 0.53 

 Number of fruits 0.47 0.51 0.47 0.53 0.47 0.52 0.47 0.52 0.47 0.52 0.25 0.33 0.45 0.52 0.35 0.45 

Fruit filling Fruit length 0.65 0.64 0.65 0.64 0.65 0.64 0.67 0.65 0.67 0.65 0.50 0.48 0.64 0.64 0.59 0.59 

 Fruit circumference 0.67 0.66 0.67 0.67 0.66 0.66 0.70 0.69 0.70 0.69 0.40 0.42 0.65 0.66 0.57 0.60 

 Fruit diameter 0.67 0.63 0.67 0.68 0.66 0.67 0.70 0.71 0.70 0.71 0.39 0.40 0.65 0.67 0.57 0.59 

 Pulp diameter 0.67 0.68 0.67 0.69 0.66 0.68 0.70 0.72 0.70 0.72 0.39 0.41 0.65 0.67 0.57 0.60 
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Supplementary Table 3: Comparison of predictive ability of BayesB model fitted with parents’ data and progeny’s data using bi-allelic and allele dosage SNP 

markers 

  
Parents model Progeny model 

Trait category Traits BA-SNP AD-SNP LIP BA-SNP AD-SNP LIP 

Plant stature Plant height 0.36 0.18 -50.0 0.77 0.51 -33.8 
 

Plant girth 0.39 0.05 -87.2 0.80 0.43 -46.3 

Suckering behaviour Total number of suckers 0.13 0.06 -53.8 0.39 0.22 -43.6 
 

Height of tallest sucker at flowering 0.23 0.12 -47.8 0.50 0.37 -26.0 
 

Height of tallest sucker at harvesting 0.19 -0.15 -178.9 0.43 -0.03 -107.0 

Black leaf streak Number of standing leaves at flowering 0.31 0.20 -35.5 0.43 0.46 7.0 
 

Index of non-spotted leaves 0.39 0.33 -15.4 0.85 0.77 -9.4 

Fruit bunch Days to fruit maturity 0.39 0.32 -17.9 0.77 0.66 -14.3 
 

Bunch mass 0.50 0.17 -66.0 0.66 0.08 -87.9 
 

Number of hands 0.45 0.03 -93.3 0.86 0.48 -44.2 
 

Number of fruits 0.31 0.10 -67.7 0.77 0.36 -53.2 

Fruit filling Fruit length 0.59 0.23 -61.0 0.78 0.22 -71.8 
 

Fruit circumference 0.49 0.17 -65.3 0.65 0.62 -4.6 
 

Fruit diameter 0.42 0.22 -47.6 0.66 0.65 -1.5 
 

Pulp diameter 0.49 0.23 -53.1 0.66 0.68 3.0 

LIP = 100*((prediction with AD-SNP – prediction with BA-SNP)/prediction with BA-SNP)   
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Supplementary Table 4: Effect of ploidy level and allelic dosage on the predictive ability of BayesB model fitted with environment averaged phenotype data 
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Bi-allelic SNP Allele dosage SNP 

Trait category Traits Tetraploid Triploid Diploid Tetraploid Triploid Diploid 

Plant stature Plant height 0.04 0.37 0.71 -0.54 0.10 0.09 
 

Plant girth 0.02 0.38 0.72 -0.02 -0.06 -0.46 

Suckering behaviour Total number of suckers -0.17 0.07 0.34 -0.48 -0.04 0.01 
 

Height of tallest sucker at flowering 0.19 0.31 0.32 -0.42 0.01 -0.13 
 

Height of tallest sucker at harvesting 0.06 0.20 0.57 -0.15 -0.03 -0.17 

Black leaf streak Number of standing leaves at flowering 0.19 0.40 0.38 0.05 0.09 -0.12 
 

Index of non-spotted leaves -0.09 0.44 0.70 -0.30 0.12 0.31 

Fruit bunch Days to fruit maturity 0.01 0.46 0.56 0.01 0.06 0.21 
 

Bunch mass 0.15 0.39 0.73 0.03 0.03 -0.50 
 

Number of hands 0.33 0.44 0.70 0.48 0.08 0.05 
 

Number of fruits 0.50 0.37 0.57 -0.21 0.03 0.08 

Fruit filling Fruit length -0.10 0.54 0.86 0.25 0.06 -0.21 
 

Fruit circumference -0.15 0.43 0.79 0.35 0.05 -0.25 
 

Fruit diameter -0.45 0.39 0.77 0.53 0.11 -0.15 
 

Pulp diameter -0.39 0.41 0.79 0.60 -0.05 -0.23 
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Appendix II  

Trait variation and genetic diversity in a banana genomic selection training population  

https://doi.org/10.1371/journal.pone.0178734  

https://doi.org/10.1371/journal.pone.0178734


RESEARCH ARTICLE

Trait variation and genetic diversity in a

banana genomic selection training population

Moses Nyine1,2,3, Brigitte Uwimana2*, Rony Swennen2,4,5,6, Michael Batte2, Allan Brown6,
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1 Faculty of Science, Palacký University, Olomouc, Czech Republic, 2 International Institute of Tropical

Agriculture, Kampala, Uganda, 3 Institute of Experimental Botany, Centre of the Region Haná for

Biotechnological and Agricultural Research, Olomouc, Czech Republic, 4 Laboratory of Tropical Crop

Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Leuven, Belgium, 5 Bioversity

International, Leuven, Belgium, 6 International Institute of Tropical Agriculture, Arusha, Tanzania

¤ Current address: Bill & Melinda Gates Foundation, Seattle, Washington, United States of America

* B.Uwimana@cgiar.org (BU); dolezel@ueb.cas.cz (JD)

Abstract

Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of

income and food security, with the highest per capita consumption worldwide. Pests, dis-

eases and climate change hamper sustainable production of bananas. New breeding tools

with increased crossbreeding efficiency are being investigated to breed for resistant, high

yielding hybrids of East African Highland banana (EAHB). These include genomic selec-

tion (GS), which will benefit breeding through increased genetic gain per unit time. Under-

standing trait variation and the correlation among economically important traits is an

essential first step in the development and selection of suitable GS models for banana. In

this study, we tested the hypothesis that trait variations in bananas are not affected by

cross combination, cycle, field management and their interaction with genotype. A training

population created using EAHB breeding material and its progeny was phenotyped in two

contrasting conditions. A high level of correlation among vegetative and yield related traits

was observed. Therefore, genomic selection models could be developed for traits that are

easily measured. It is likely that the predictive ability of traits that are difficult to phenotype

will be similar to less difficult traits they are highly correlated with. Genotype response to

cycle and field management practices varied greatly with respect to traits. Yield related

traits accounted for 31–35% of principal component variation under low and high input

field management conditions. Resistance to Black Sigatoka was stable across cycles but

varied under different field management depending on the genotype. The best cross com-

bination was 1201K-1xSH3217 based on selection response (R) of hybrids. Genotyping

using simple sequence repeat (SSR) markers revealed that the training population was

genetically diverse, reflecting a complex pedigree background, which was mostly influ-

enced by the male parents.
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Introduction

East Africa is considered a secondary center of banana genetic diversity. Uganda in particu-

lar is a home to over eighty cultivars of East African Highland banana (EAHB) commonly

divided into cooking and beer types [1]. The crop greatly contributes to the income and food

security of many smallholder farmers in the region. The significance of the crop in the region

is reflected in the per capita consumption that ranges between 250kg and 600kg with an aver-

age of 400kg in Uganda [2]. Over 85% of the production is consumed locally due to high

demand [3, 4]. Sustainable production of bananas is a challenge because of disease, insect

and nematode pressure. This is worsened by abiotic stress arising through factors associated

with climate change [5]. Yield reductions in EAHB are caused by pests such as root burrow-

ing nematodes especially Radopholus similis and banana weevil (Cosmopolites sordidus).

Black Leaf Streak (Black Sigatoka), a fungal disease caused by Mycosphaerella fijiensis reduces

the photosynthetic area of the plant, which decreases yield. Banana bacterial wilt caused by

Xanthomonas campestris pv. musacearum causes 100% yield loss when the banana is attacked

[6–8]. Variation in rainfall patterns impacts banana production by causing drought stress

because most farmers in the region rely on rain for agricultural production. Although pheno-

typic variation is observed in EAHB, their genetic variation is low [9, 10] making them all

susceptible to biotic and abiotic stress. Adaptation of cultivated banana varieties to changing

environment is limited because while some are capable of sexual reproduction, they are all

propagated clonally.

In order to meet the food demand for the growing population, breeding for resistance

and high yielding varieties is considered to be the most sustainable solution to address

banana production constraints [11, 12]. Unlike other crops, banana breeding is complicated

by the polyploid nature of the crop characterized by abnormal meiosis in the cultivated trip-

loid varieties that results in reduced fertility or complete sterility [13–15]. Crossing cultivated

varieties with resistant wild diploids is possible, but a majority of the generated hybrids are

inferior due to linkage drag of unfavorable genes from the wild diploids. However, when

tetraploids are obtained, further improvement is possible because they are both male and

female fertile (Fig 1). Incorporating resistance while maintaining the unique attributes such

as fruit colour, aroma, texture and taste in existing varieties is a big challenge to banana

breeders that calls for dedicated effort and careful choice of cross combinations. Crossbreed-

ing is labour-intensive, costly and time consuming. In the last two decades, some success has

been registered with new hybrids released to farmers while others are in the advanced stages

of evaluation [16]. In order to keep up with the pace at which environmental changes occur

and the demand for new varieties that are productive and of good quality, new breeding

strategies should be employed to increase breeding efficiency and reduce the lengthy selec-

tion period [3].

Marker assisted selection (MAS) has been implemented in many animal and crop breed-

ing programs. The success of MAS greatly depends on the genetic architecture of traits

being improved. To date MAS has not been effectively deployed in banana breeding. The

possible reasons are polyploidy, important economic and agronomic traits may be con-

trolled by many quantitative trait loci (QTL), each with a small additive effect, and the lack

of saturated linkage maps for QTL mapping. It is believed that the application of genomic

selection (GS) will improve the efficiency of crossbreeding programs especially for crops

with long breeding and selection cycle [17, 18] like banana. GS is a form of MAS where

selection is based on the genomic estimated breeding values (GEBV) of superior individuals

in the population as determined by a statistical model [19–21]. This technique is well estab-

lished in animal breeding [22, 23]. In plants, GS has been tested in maize and wheat [24],
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white spruce [25], rice [26] and cassava [27]. However, in bananas GS is in its infancy.

Given that new varieties are selected based on a combination of traits, a selection index of

GEBV in bananas is necessary.

GS studies have reported varying accuracies in prediction (predictive ability of GS models)

and this has been attributed to differences in trait heritability, number of markers, training

population size and genotype x environment interaction [24]. Bananas as perennial plants suf-

fer the consequences of nutrient deficiency and soil moisture variation across seasons and

locations depending on field management practices. Breeding generates genotypes from many

crosses that are genetically different and respond to growth environment differently and this

could affect the accuracy of GS. Therefore, understanding trait variation and the correlation

between different traits is essential to guide the development and selection of suitable GS mod-

els for banana breeding. In this study we tested the hypothesis that trait variations in bananas

are not affected by cross combination, cycle, field management and their interaction with

genotype. For this, a training population created using EAHB breeding material and its prog-

eny was phenotyped in two contrasting conditions. Genetic diversity of the training popula-

tion was assessed using simple sequence repeat (SSR) markers.

Fig 1. Conventional banana breeding starts with crossing 3x inferior and parthenocarpic landrace varieties

(A) with a wild, seeded 2x accession (B). 4x resulting from this cross (C) are selected and crossed with

improved 2x hybrids (D). The resulting secondary 3x (E) are selected and evaluated as potential improved

varieties. This process takes up to 15 years.

https://doi.org/10.1371/journal.pone.0178734.g001
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Materials and methods

Plant population

Data were collected at the International Institute of Tropical Agriculture, Uganda from a

banana genomic selection (GS) training population between 2013 and 2016. The institute is

located at Namulonge research station, 0.53˚ N 32.58˚ E, 1150 m above sea level with rainfall

of about 1200 mm/y split into two rainy seasons, March-June and September-December and

an average annual temperature of 22˚C. The GS population consisted of 307 genotypes that

included diploid (11%), triploid (85%) and tetraploid (4%) plants (S1 Table). The ploidy

level of the genotypes was determined using flow cytometry [28, 29]. The core breeding lines

(parents) accounted for 12% of the entire population. Two fields were established with each

genotype replicated three times in a completely randomized design. Suckers were used as

planting materials and before planting, 20kg of farmyard manure was applied in each hole.

One field (GS1) was managed without mulching, additional manure nor inorganic fertilizer

(low input). The second field (GS2) was mulched twice a year. Six months after planting, 480 g

of NPK (25:5:5) fertilizer was added and the same amount was added to each mat per year

(high input).

Traits

The yield-related traits scored included: days to fruit maturity (DFM) that is, days between

flowering and harvesting, bunch weight at full maturity (BWT), number of hands (cluster)

(NH) and number of fruit fingers (NF), fruit length (FL), fruit circumference (FC), fruit diam-

eter (FRD), pulp diameter (PLD) and peel thickness (PED), where PED = (FRD—PLD)/2. The

vegetative (growth) traits included: number of standing leaves at flowering (NSLF), youngest

leaf spotted with Black Sigatoka at flowering (YLSF), index of non-spotted leaves at flowering

(INSL), height of tallest sucker at harvesting (HTSH), plant height at flowering (PHF), plant

girth at 100 cm from soil surface (PG), height of tallest sucker at flowering (HTSF), total num-

ber of suckers at flowering (TS), number of standing leaves at harvesting (NSLH) and youngest

leaf spotted with black sigatoka at harvesting (YLSH).

Total number of suckers (TS) was recorded at flowering in cycle 1 only after which each

mat was left with a maximum of three plants and these included the flowered plant, follower

sucker and the sucker produced by follower sucker if present. A Vernier caliper was used to

measure FRD and PLD. Fruit related traits such as FL, FC, FRD and PLD were recorded

from the middle finger of the second hand on the bunch. Measurements for FC, FRD and PLD

were recorded midway the length of the finger. However, to measure FRD and PLD, a cross-

section of the fruit was made to expose the pulp. The INSL was calculated from the formula,

INSL = 100�(YLSF-1)/NSLF [30]. This formula should give percentage values ranging from

0–100% to represent completely susceptible (0%) and completely resistant (100%). In order

to get 100% INSL for completely resistant genotypes, the YLSF was scored as NSLF +1 thus

INSL = 100�((NSLF+1)-1)/NSLF or INSL = 100�NSLF/NSLF

Data analysis

All analyses were performed in R, open source statistical software from www.r-project.org. A

combination of Shapiro-Wilk test, boxplots, standard deviations and histograms were used to

check for normality and outliers in the data and where necessary the outliers were removed

before further analysis. Total number of suckers and bunch weight were transformed by square

root. Using the aggregate function from library (plyr), trait means were calculated for every
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genotype and cross combination (family) in every cycle, and field and these were used in corre-

lation analysis and principal component analysis (PCA).

Correlation analysis and test of significance for the correlations between traits were done

using library (Hmisc) and Student’s t-test based on cycle 2 data for cross combinations. Coeffi-

cient of determination (R2) was calculated as a square of correlation coefficient between cycle

1 and 2 data. To understand the structure of the population and how different traits influenced

that structure, principal component analysis was done using PCA function provided in the

library (FactoMineR). Traits (dependent variable), cross combinations and individual geno-

types were projected on the first two components (Dim1 and Dim2).

Sources of trait variation were assessed using unbalanced analysis of variance (ANOVA)

based on cycle 1 and 2 data. Linear models were constructed for each trait in respect to each

cycle, field management practice and their interaction with genotype as model_fit = lm(trait

response~clone+cycle+field+clone:field+clone:cycle, data = mydata) where lm = linear model

function. Type III SS ANOVA tables were generated using Anova function provided in the

library(car) as result = Anova(model_fit, singular.ok = TRUE, type = “III”). In cases where

no significant interactions were observed between two independent variables and where one

explanatory variable was not significant, then type II or type I SS ANOVA was used for further

investigation.

Selection differential (S) and response to selection (R) were used to compare performance

of parental cross combinations [31]. S and R were calculated as, S = P—G and R = H—G,

where P = average performance of a pair of parents, G is the average performance of all paren-

tal lines in the training population and H is the average performance of all hybrid that shared

same parental pair. Only cross combinations that had at least five hybrids were compared

across all traits using combined data from the two fields.

Genetic diversity

Genetic diversity of the training population was assessed using simple sequence repeat (SSR)

markers. Cigar leaf samples were collected from the training population in Uganda and

shipped to the Institute of Experimental Botany, Olomouc, Czech Republic under cold chain.

Samples were lyophilized prior to DNA extraction. DNA from lyophilized samples was

extracted using NucleoSpin Plant II kit, Macherey-Nagel, Germany, following the manufactur-

er’s instructions. The concentration and quality of DNA was assessed by NanoDrop ND-1000

spectrophotometer. Nineteen informative Musa SSR primers were used to genotype the GS

training population. The list of primers used, polymerase chain reaction (PCR) conditions,

and fragment analysis procedure were adopted from Christelová et al. [32].

Two independent rounds of PCR were performed on each sample. The concordance of

alleles from each sample were inspected and scored manually in GeneMarker v1.75 (Softge-

netics, State College, PA, USA). A third round of PCR was performed only for samples that

showed incongruity with the two reactions. Alleles were scored as dominant markers for pres-

ence and absence (1/0). Data were imported in R and squared Euclidean distances were gener-

ated using the function dist provided in the library(ape). Clustering was done with function

hclust based on ward.D method [33, 34]. Polymorphism information content of each marker

was estimated by PowerMarker v3.25 software [35].

Results

During data analysis, some genotypes were excluded for some traits due to missing data or

extreme outliers. The outliers were mainly recorded on plants that were infected with banana
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Xanthomonas wilt before full maturity, plants that snapped due to weevil damage and prema-

ture breaking of the peduncle due to windstorm.

Correlation of traits

Significant correlations were observed among and between growth and yield traits (Tables 1

and 2). PHF had significant positive correlation with PG followed by HTSF. PG positively cor-

related with BWT, NF and HTSF in that respective order. The traits associated with Black Siga-

toka resistance (NSLF, YLSF and INSL) also correlated significantly to each other. However,

they had significant negative correlations with fruit traits such as FC, FRD and PLD. A positive

and significant correlation was observed between BWT and all fruit traits (NH, NF, FL, FC,

FRD, PLD), which were similarly significantly and positively correlated to each other. Under

conditions of low input field management (GS1), TS, NSLH and NF were not significantly cor-

related with other traits while under high input field management (GS2), it was INSL, DFM

and HTSH that did not have significant correlation with other traits. In both fields, the highest

positive correlations were observed among the yield traits. In this population, absolute apical

dominance was not observed as all genotypes had at least one sucker at the time of flowering.

However, sucker regulation varied among genotypes with a range of 1–25 suckers per plant.

Principal component analysis (PCA)

Principal component analysis showed that in both fields, the yield (fruit) traits contributed to

the first component (Dim 1) while the vegetative (growth) traits contributed to the second

component (Dim 2) (Fig 2A and 2B). Among the vegetative traits, PHF and PG contributed to

Dim 1. Dim 1 accounted for 31.07% of variation in GS1 and 35.86% in GS2. Dim 2 accounted

for 21.89% of variation in GS1 and 15.40% in GS2. The traits with the highest negative loading

on Dim 1 included FC, FRD and PLD for GS1 while for GS2 it was FC, FRD, PLD and FL. In

both GS1 and GS2, the traits with the highest positive loading on Dim 2 were NSLF, YLSF,

INSL and NSLH. Both DFM and TS had the least contribution to the two components

with completely different orientation in GS1 and GS2. Generally, in both fields the two compo-

nents accounted for 50% of the variation observed in the genotype cross combinations (Fig 3A

and 3B).

For individual genotypes, a similar trend was observed with Dim 1 and Dim 2 accounting

for 31.43% and 19.11% of total trait variation, respectively (Fig 4A). Projection of the individ-

ual factors (genotypes) on the two components did not reveal any distinct population structure

(Fig 4B). The same trend was observed when individual cross combinations were projected

on the two components. However, in GS1 cross combinations C35 (917K-2 x Kokopo), C28

(8817S-1 x 917K-2) and C52 (SH2095 x SH2766) and in GS2 cross combinations C35 (917K-2

x Kokopo), C22 (365K-1 x 660K-1) and C29 (8817S-1 x 917k-2) were distinct and clearly sepa-

rated out from the others (Fig 3a and 3b). When the data were re-examined, genotypes from

cross C35 had the least average scores on the yield traits while cross C22, C29 and C52 had the

highest average scores on the yield traits. All the four planes of the two components were rep-

resented in the population.

Based on Black Sigatoka resistance and fruit filling (indicated by FRD), four main groups

were represented in the population: (i) genotypes with high INSL and good fruit filling, (ii)

high INSL with poor fruit filling, (iii) low INSL with good fruit filling and (iv) low INSL with

poor fruit filling. On average the observed INSL and FRD for the genotypes in the four groups

were as follows: (i) 78.1% and 3.0cm, (ii) 80.1% and 1.4cm, (iii) 66.8% and 3.1cm, and (iv)

67.1% and 1.4cm, respectively. Genotypes projected on Dim 2 had high average scores on
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NSLF, YLSH, INSL, and NSLH and in contrast they had the lowest average scores on BWT,

FL, FC, FRD, and PLD and the reverse was true for those projected on Dim 1.

Analysis of variance

Visual inspection of boxplots for various traits indicated a cycle effect on data distribution of

some traits while others were not affected by cycle. For example, Plant height increased at

cycle 2 while index of non-spotted leaves did not increase (Fig 5a and 5b) and this was con-

firmed by ANOVA results. Fruit traits such as FC, FRD and PLD showed a bimodal distribu-

tion with the histogram having two peaks. Based on these parameters, the population could be

separated into two main groups, poor fruit filling genotypes with FRD < 2.0 cm and FC < 8.0

cm, and good fruit filling genotypes with FRD� 2.0 cm and FC� 8.0 cm (S1A–S1D Fig).

Fig 2. Principal component analysis plots generated in R using package FactoMineR for the traits

scored in a banana genomic selection training population. (A) shows the distribution of traits under low

input field management (GS1) and (B) shows the distribution of traits under high input field management

(GS2) on the first two components.

https://doi.org/10.1371/journal.pone.0178734.g002

Fig 3. Principal component analysis plots generated in R using package FactoMineR for the cross

combinations in a banana genomic selection training population. (A) shows the distribution of cross

combinations under low input field management (GS1) and (B) shows the distribution of cross combinations

under high input field management (GS2) on the first two components.

https://doi.org/10.1371/journal.pone.0178734.g003
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Coefficients of determination showed that under low input, cycle had less effect on NSLF,

YLSF, INSL, TS, HTSF and PED across genotype cross combinations (Table 3). The Student’s

t-test revealed that both PED and HTSF were the most stable traits across cycles at 95% confi-

dence level with P = 0.515 and P = 0.108, respectively. Under high input, cycle accounted for

less than 50% of the variation in NSLF, YLSF, INSL, TS, HTSF, DFM, NSLH, NH, NF and

PED between cross combinations. Just as in the first field, PED and HTSF were the least

affected with P = 0.216 and P = 0.108, respectively. Under high input field management, trait

variation due to cycle was more homogenous as compared to low input field management.

However, in both cases the effects were statistically significant (P< 0.001) indicating that cycle

is a source of variation in genotype performance.

When generating ANOVA models, genotype (clone) was assumed to be the main source of

variation. In addition to genotype the effect of cycle, field and their interaction with genotype

Fig 4. Principal component analysis plots generated in R using package FactoMineR for the traits

scored in a banana genomic selection training population. (A) shows the distribution of traits for

individual genotypes and (B) shows the distribution of individual genotypes on the first two components based

on mean of combined data from the two fields.

https://doi.org/10.1371/journal.pone.0178734.g004

Fig 5. Effect of cycle on trait variation in bananas, where (a) shows an increase in plant height at

flowering at cycle 2 while (b) shows no increase in index of non-spotted leaves at cycle 2.

https://doi.org/10.1371/journal.pone.0178734.g005
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was investigated. In all models for all traits, genotype had significant effect on trait variation

with P< 0.001 (Table 4, S3 Table). Traits that were not affected by the interaction between

genotype and field management practice include PHF and PG whereas traits not affected by

interaction between genotype and cycle include NSLF, YLSF, INSL, YLSH, FL, FRD and PED

(P> 0.05). Weak interaction between genotype and cycle was observed on NSLH and HTSH

with P = 0.0417 and 0.0408, respectively. In some cases, although there were significant inter-

actions between genotype and field or cycle, either field or cycle did not show significant effect

on the trait when interaction was included in the model.

Whereas there were significant interactions between genotype and field management, there

was no significant main effect of field on NSLF, YLSF, HTSF, INSL, TS, NSLH, YLSH, HTSH,

NH, NF and PED. Similarly, in the presence of significant interaction between genotype and

cycle, there was no main effect of cycle on INSL, HTSF, HTSH, FC, PLD and PED (Table 4, S3

Table). When the interactions were removed from the models, all the factors had significant

effect on the traits except INSL and PED, for which cycle had no effect. Analysis was repeated

on these two traits using type I and type II ANOVA and both produced similar results as that

observed with type III SS.

Performance of cross combinations (parental pairs)

The GS training population consisted of 77 different cross combinations representing about

two decades of banana breeding activities by IITA and NARO Uganda. Some of these cross

combinations gave rise to the tetraploids and improved diploids that are part of the core breed-

ing lines in the program. Tetraploids and triploids were predominantly used as female parents

while the diploids provided the pollen source but in some instances 2x by 2x or 4x by 4x

crosses were made. The majority of the cross combinations were excluded for this analysis in

Table 3. Coefficient of determination and Student’s t-test P-values showing the effect of cycle on

cross combinations.

GS1 GS2

Traits df R2 P-value df R2 P-value

NH 60 0.87 <0.0001 56 0.44 <0.0001

PLD 57 0.78 <0.0001 56 0.65 <0.0001

FRD 59 0.77 <0.0001 56 0.68 <0.0001

PED 58 0.06 0.5150 56 0.03 0.2161

BWT 60 0.79 <0.0001 56 0.74 <0.0001

NF 60 0.54 <0.0001 56 0.37 <0.0001

FL 59 0.77 <0.0001 56 0.64 <0.0001

FC 58 0.79 <0.0001 56 0.73 <0.0001

DFM 59 0.54 <0.0001 56 0.25 <0.0001

NSLH 60 0.63 <0.0001 56 0.38 <0.0001

PHF 66 0.65 <0.0001 63 0.73 <0.0001

PG 66 0.65 <0.0001 63 0.73 <0.0001

NSLF 66 0.25 <0.0001 63 0.28 <0.0001

YLSF 66 0.47 <0.0001 63 0.26 <0.0001

INSL 66 0.14 0.0015 63 0.21 0.0001

TS 68 0.12 0.0032 68 0.12 0.0032

HTSF 68 0.04 0.1084 68 0.04 0.1084

Df = degrees of freedom, GS1 = low input field, GS2 = high input field and R2 = coefficient of determination

https://doi.org/10.1371/journal.pone.0178734.t003
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this work because they had less than five hybrids in the population. However, crosses between

different EAHB with Calcutta 4 were treated as one cross because the EAHB represent a clone

set with very low genetic diversity [9]. In total sixteen cross combinations were compared and

they included one 2x by 2x, one 3x by 2x and fourteen 4x by 2x crosses (Table 5 and S2 Table).

The best cross in terms of yield and fruit size was C10 (1201K-1xSH3217). Many hybrids

from this cross had the highest bunch weight (R = 3.8) characterized by longer fruit fingers,

big fruit circumference and the highest pulp content. However, the plants were very tall with

big girth. Their maturity period was shorter (about 4.5 months on average) and comparable to

hybrids from EAHBxCalcutta 4. Generally, crosses involving SH3217, SH3362 and 9128–3 as

male parents produced hybrids that had good fruit filling characteristics although they varied

in Black Sigatoka resistance and suckering behavior. For example, crosses involving 9128–3

generated hybrids that had the lowest INSL.

Hybrids from a cross between 5610S-1 and 2180K-6 produced the highest number of leaves

scored at flowering (R = 2.1). They had the highest resistance to Black Sigatoka as reflected by

INSL (R = 7.2%) despite the parents being susceptible. They were the shortest (R = -62.3 cm)

with smaller plant girth. Their average maturity period was almost two months more than the

average of all parental lines (R = 54.6 days) and the longest of all other hybrids. Due to long

maturity period the number of standing leaves at harvest was very low because of normal

leaf senescence. Despite producing many fruit fingers and slightly more hands per bunch,

their average yield and size of fruits were lower than those of the parents. However, some

exceptional lines such as 25031S-7 (diploid) had sizable bunch with relatively big fruits.

Table 4. Effect of genotype (clone), field management, cycle and their interaction on trait variation.

Dep. variable Indep. variable Sum Sq Df F value Pr(>F)

PHF Clone 2222889.11 306 3.77 <0.0001

Clone:Field 432297.46 284 0.79 0.9947

Clone:Cycle 332846.71 299 1.05 0.2662

PG Clone 73176.82 306 4.30 <0.0001

Clone:Field 12061.30 284 0.76 0.9981

Clone:Cycle 13057.24 299 1.51 <0.0001

INSL Clone 116602.02 306 2.44 <0.0001

Clone:Field 58583.77 284 1.32 0.0005

Clone:Cycle 51026.49 299 0.95 0.6947

TSsqrt Clone 240.28 305 3.21 <0.0001

Clone:Field 100.88 282 1.46 <0.0001

BWTsqrt Clone 1213.89 303 12.55 <0.0001

Clone:Field 126.77 269 1.48 <0.0001

Clone:Cycle 108.68 276 1.49 <0.0001

FC Clone 9506.06 300 16.11 0.0000

Clone:Field 733.66 269 1.39 0.0001

Clone:Cycle 751.00 272 1.29 0.0021

PLD Clone 865.42 299 17.60 0.0000

Clone:Field 68.27 269 1.54 <0.0001

Clone:Cycle 60.55 271 1.29 0.0022

PED Clone 20.96 299 11.41 <0.0001

Clone:Field 16.61 269 10.05 <0.0001

Clone:Cycle 3.15 271 0.80 0.9913

sqrt Original data transformed by square root

https://doi.org/10.1371/journal.pone.0178734.t004
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Crosses involving M. acuminata ssp. malaccensis 250 as male parent produced hybrids

that were tall, slender, with bunches that had many fruit fingers poorly filled with pulp but

some individual genotype exceptions were observed. The hybrids were resistant to Black

Sigatoka and had the highest number of functional leaves at harvesting. Hybrids from cv.

Table 5. Comparison of mean performance of parental cross combinations (S) and hybrids from those crosses (R) against the mean of all parents.

CROSS C04 C05 C08 C10 C11 C12 C13 C16 C22 C27 C31 C33 C34 C37 C61 MxC4

S (NSLF) -0.5 -0.2 1.2 0.4 0.2 -0.2 -0.3 1.2 0.7 1.9 0.1 -0.3 -0.1 1.4 0.4 -1.1

R (NSLF) -0.4 0.5 0.8 0.0 1.4 0.9 0.1 1.8 2.1 1.8 0.6 0.3 -0.2 1.4 0.8 0.1

S (YLSF) -0.7 -0.4 1.4 0.3 0.0 -0.2 -0.3 1.7 0.2 1.7 -0.8 -1.1 -0.7 1.1 -0.3 -1.5

R (YLSF) -0.7 0.3 0.7 0.0 0.8 0.4 0.1 1.8 2.2 1.7 0.4 -0.1 -0.1 1.2 0.7 -0.1

S (PHF) 24.1 -33.5 6.6 35.2 35.8 17.2 -37.5 3.8 -21.8 -1.5 -14.0 -11.4 -58.2 -22.5 0.2 25.9

R (PHF) 14.8 -23.8 10.1 33.6 -23.4 -7.4 -39.4 -6.6 -62.3 2.5 0.5 7.9 -31.0 -17.6 -9.5 7.6

S (PG) 9.6 -2.9 5.0 11.1 11.7 2.8 -7.5 -0.1 -5.3 1.3 0.9 1.4 -8.5 -1.6 3.6 3.3

R (PG) 3.6 -3.2 1.2 6.0 -1.4 2.3 -6.8 -1.4 -5.7 -0.6 2.2 4.9 -5.4 -2.0 3.3 2.0

S (HTSF) 11.4 -8.5 30.1 24.2 31.7 -5.5 -18.1 20.5 -46.3 23.0 -27.5 -25.0 -33.7 0.3 -4.7 23.0

R (HTSF) 15.0 -10.3 6.3 23.3 -21.1 -7.3 -26.8 14.3 -32.5 13.4 0.8 -2.5 -14.4 -4.0 -6.4 4.2

S (INSL) -1.8 -1.0 4.9 0.9 0.3 0.2 0.7 7.2 -1.5 3.9 -6.4 -6.5 -4.2 1.1 -4.3 -7.0

R (INSL) -2.9 0.6 1.4 1.2 -1.9 -0.7 1.1 5.7 7.2 4.1 0.1 -1.8 1.8 2.7 2.2 -0.9

S (TS) -1.6 2.8 0.7 -1.0 1.1 -1.1 3.0 1.2 -1.7 0.1 -3.3 -2.9 1.3 -0.7 -0.4 0.0

R (TS) -0.3 1.9 0.6 0.8 -1.0 -1.2 0.8 1.0 -0.4 -0.8 0.3 -1.9 1.2 0.0 0.7 -1.2

S (DFM) 2.4 2.7 15.9 10.0 -1.3 4.9 6.5 31.4 14.2 32.9 8.9 10.9 8.8 28.0 8.2 -21.3

R (DFM) 7.8 6.3 21.1 7.3 -1.9 19.9 1.6 8.3 54.6 32.6 23.9 11.2 13.5 22.3 20.7 7.2

S (NSLH) -0.7 -0.9 0.3 -0.4 -0.5 -0.1 -0.7 1.3 0.5 1.5 0.4 0.1 -0.3 1.4 0.6 -0.7

R (NSLH) -0.9 0.0 0.8 -0.4 1.5 0.6 0.1 2.3 0.3 1.4 0.3 0.1 -0.1 1.1 0.1 0.2

S (YLSH) -0.4 -0.4 0.3 -0.1 -0.2 0.0 -0.3 1.0 0.1 1.1 -0.1 -0.2 -0.3 0.6 0.0 -0.4

R (YLSH) -0.5 0.1 0.5 -0.2 0.9 0.1 0.0 0.8 0.1 0.6 0.2 0.2 0.1 0.8 0.1 0.1

S (HTSH) 27.6 -0.1 25.2 34.0 26.8 5.9 -21.3 10.8 -21.7 28.9 -2.6 4.6 -21.7 1.6 -2.2 7.7

R (HTSH) 23.4 -0.3 45.0 24.0 -18.4 18.4 -23.1 17.3 -15.9 19.1 23.6 9.9 -11.6 15.0 2.9 31.0

S (BWT) 5.6 2.3 4.2 7.2 7.0 1.5 -2.3 -1.5 -0.6 2.1 2.1 1.6 -1.2 -0.2 2.6 -0.7

R (BWT) 3.4 0.7 1.0 3.8 -0.9 1.0 0.4 -4.0 -2.3 -2.3 0.7 2.5 -0.1 -2.8 3.4 1.4

S (NH) 0.7 0.1 0.2 2.6 0.5 0.7 -0.1 0.0 1.1 0.6 0.2 0.3 -0.3 -0.3 -0.1 -0.8

R (NH) 0.4 0.4 1.0 0.9 1.2 1.1 0.3 0.9 1.2 0.4 0.8 1.2 -0.4 0.5 0.7 -0.3

S (NF) 22.1 -1.8 19.7 37.2 17.5 7.0 -19.7 7.7 7.5 15.9 8.8 12.2 -13.4 9.2 3.6 -16.0

R (NF) 15.9 9.0 35.8 12.8 19.9 13.9 1.5 21.7 27.4 10.7 19.6 25.6 -3.1 16.3 13.5 2.0

S (FL) 1.6 -0.2 0.8 2.8 1.9 0.7 -1.1 -1.4 -1.5 0.4 0.5 1.0 -0.9 -0.2 1.2 0.2

R (FL) 2.8 0.3 -0.8 2.5 -1.3 -0.2 -0.2 -3.9 -2.0 -2.6 -0.5 1.6 1.3 -2.6 2.3 0.3

S (FC) 2.2 0.7 2.2 2.1 3.1 1.2 -1.2 -1.1 0.4 0.9 1.2 0.6 -0.7 0.3 1.4 0.9

R (FC) 0.8 0.0 -0.6 1.2 -1.8 -0.7 -0.4 -3.4 -2.8 -2.5 -0.8 0.1 -0.4 -3.0 0.6 0.8

S (FRD) 0.6 0.2 0.6 0.6 0.9 0.4 -0.4 0.0 0.2 0.6 0.5 0.3 -0.2 0.2 0.6 0.1

R (FRD) 0.2 0.0 -0.3 0.3 -0.7 -0.3 -0.2 -1.2 -1.0 -0.8 -0.4 -0.1 -0.2 -1.0 0.1 0.4

S (PLD) 0.6 0.2 0.6 0.6 0.9 0.3 -0.3 0.0 0.1 0.6 0.5 0.3 -0.1 0.2 0.6 0.1

R (PLD) 0.2 0.0 -0.3 0.3 -0.7 -0.3 -0.1 -1.2 -1.0 -0.9 -0.4 -0.1 -0.2 -1.0 0.1 0.4

S (PED) 0.00 0.00 0.02 0.00 0.02 0.03 -0.02 0.01 0.01 0.02 0.00 -0.03 -0.03 -0.02 -0.01 0.01

R (PED) 0.01 0.01 -0.01 0.01 0.00 0.02 -0.01 -0.01 0.01 0.04 0.02 0.01 0.00 0.00 0.01 0.00

S = Selection differential, R = Response to selection, bold values are the highest observations, C04 = 1201K-1x9128-3, C05 = 1201K-1 x cv. Rose,

C08 = 1201K-1 x malaccensis, C10 = 1201K-1 x SH3217, C11 = 1201K-1 x SH3362, C12 = 1438K-1 x 5610S-1, C13 = 1438K-1 x cv. Rose, C16 = 1438K-1

x malaccensis, C22 = 5610S-1 x 2180K-6, C27 = 660K-1 x malaccensis, C31 = 917K-2 x 5610S-1, C33 = 917K-2 x 9128–3, C34 = 917K-2 x cv. Rose,

C37 = 917K-2 x malaccensis, C61 = 917K-2 x SH3362 and MxC4 = Matooke (EAHB) x Calcutta 4

https://doi.org/10.1371/journal.pone.0178734.t005
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Rose were slender and shorter and were the highest in sucker production while other traits

varied considerably.

Hybrids from different cross combinations had longer maturity period (128–185 days) than

EAHB. On average EAHB mature within 90 days after flowering while the average maturity

period for all parental lines was 130 days.

Genetic diversity of GS training population

Out of the nineteen SSR markers, eighteen were used to delineate the structure of the study

population, because marker mMaCIR164 produced ambiguous allele profiles across samples.

From 18 loci, 195 alleles were scored and the number of alleles per locus ranged between 4 and

18 with an average of 10.8. Polymorphism information content (PIC) of the markers was high

with an average of 0.87 (0.53–0.95) while the major allele frequency was on average 0.22 (0.1–

0.45).

Despite the complex pedigree background of the GS population, SSR markers were infor-

mative enough to delineate the structure of the population (Fig 6). Hierarchical clustering

based on Ward’s criterion revealed ten groups indicating that the genetic diversity of popula-

tion was high. The triploid East African highland bananas clearly separated from other trip-

loids. They had the lowest within group genetic diversity. The tetraploids that resulted from

crossing EAHB by cv. ‘Calcutta 4’ and M. acuminata ssp. malaccensis 250 formed their own

cluster but were closely linked to that of EAHB, thus supporting the hypothesis that the tetra-

ploids were formed after fusion of unreduced gametes from triploid EAHB and haploid gam-

etes from diploid cv. ‘Calcutta 4’ and M. acuminata ssp. malaccensis 250. The within cluster

dispersion was rather homogenous and not highly diverse for the tetraploid hybrids probably

due high allele dosage from EAHB. SSR data suggested that the tetraploid presumed to be

hybrids of cv. Enzirabahima by M. a malaccensis 250 (29275S-1, 29275S-4 and 29275S-5), were

in fact admixtures from pollination of EAHB with cv. ‘Calcutta 4’. These tetraploid inherited

17 alleles specific for cv. ‘Calcutta 4’ and none of ssp. malaccensis 250 specific alleles across the

18 SSR markers used.

Hierarchical clustering of hybrids was much influenced by male parents used in the cross.

The biggest percentage of hybrids was produced from crosses involving tetraploids derived

from EAHB and cv. ‘Calcutta 4’. Hybrids from ssp. malaccensis 250 were more distinct from

the rest of the population and formed their own cluster. Four hybrids (26998S-1, 27074S-1,

28506S-1 and 27960s-1) presumed to be progeny of 2180K-6, cv. ‘Calcutta 4’ and cv. ‘Rose’ as

male parents clustered together with ssp. malaccensis 250 hybrids. SSR genotype profiles sug-

gested that those four hybrids were misidentified because they had ssp. malaccensis 250 specific

alleles. The highest genetic diversity was observed in the diploid parents and between families.

Diploids that were linked by pedigree clustered together but the within cluster differences

were high compared to EAHB and tetraploids. Diploids such as cv. ‘Calcutta 4’, 861S-1, 5610S-

1, 2180K-1, Kokopo, and cv. ‘Rose’ clustered with their hybrids. Hybrids derived from 5610S-1

x 2180K-1 were all diploids and closely related to cv. ‘Calcutta 4’ and 861S-1 and formed a sep-

arate cluster. Although the pedigree of 2180K-1 could not be traced, there is a possibility that

one of its parents was cv. ‘Calcutta 4’. Hybrids from cv. ‘Long Tavoy’ and cv. ‘Calcutta 4’ were

not easily delineated because of the close resemblance of these genotypes. One cluster (J) com-

prising of triploid hybrids showed high within cluster diversity. Majority of advanced hybrids

especially NARITA hybrids comprising of potential candidate varieties are found in this clus-

ter. The ssp. zebrina accessions included in the analysis clustered within the main clusters sug-

gesting their genetic relatedness with other acuminata genotypes. In the population, some

genotypes were duplicates. The duplicates identified included 28465S-2 (A&B), 26337S-11

Phenotyping and banana genomic selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0178734 June 6, 2017 14 / 23

https://doi.org/10.1371/journal.pone.0178734


Fig 6. Dendrogram showing the genetic diversity of the genomic selection training population based on 19 informative SSR markers. The

squared Euclidean distances were used to generate the hierarchical clusters based on ward.D criterion. Where cluster A = tetraploids (4x) by M. a. spp.

malaccensis 250, * share only female parent, cluster B = matooke (EAHB), cluster C = tetraploids from EAHB (3x) by Calcutta 4 a wild diploid (2x), cluster

D = wild and improved diploids, cluster E = Black Sigatoka resistant diploid hybrids, cluster F = hybrids of 5610S-1 as a male parent, * share grandparent

Calcutta 4, GC = good for cooking and N = NARITA hybrid, cluster G = cv. Rose was the main male parent, * share genetic background, cluster H = Long

Tavoy and Calcutta 4 are the grandparents, cluster I = mostly hybrids of SH3217 as male parent, N = NARITA, @ = released variety as NARITA 7/M9/

Kiwangazi and cluster J = triploid hybrids with complex pedigree, most advanced hybrids such as NARITAs (N) are found in this cluster of which some are

promising variety candidates and GC = good for cooking.

https://doi.org/10.1371/journal.pone.0178734.g006
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(A&B) and 26337S-22 (A&B) while 27524S-12 (A&B) that were assumed to be duplicates

were clarified to be genetically different although both were progeny of ssp. malaccensis 250.

Other supposed unique genotypes were identified as likely clonal pairs, such as 24948S-9 and

24948S-10, 24948S-22 and 24948S-27, 25623S-11 and 25628S-11, 24948S-12 and 24948S-21,

12479S-1 and 12479S-13, 25737S-1 and 25356S-1, and 25066S-1 and 25066S-2.

Discussion

Trait evaluation

Bananas express many traits that are used to evaluate hybrids in breeding programs. These

traits can be broadly classified as vegetative/agronomic (growth) traits, or yield and consumer

appeal (fruit) traits. Growth and yield related traits are used to assess the level of introgression

of resistance genes and this is done in the early evaluation trial. The index of non-spotted

leaves (INSL) is a measure of resistance to Black Sigatoka, a fungal disease that causes rapid

drying of leaves hence reducing the photosynthetic area [7]. Results from ANOVA obtained in

this work showed that INSL was not significantly affected by cycle. However, the effect of level

of input in field management on INSL depended on genotype. This suggests that resistance to

Black Sigatoka might be under strong genetic control and less influenced by cycle.

Correlation analysis showed a positive correlation between INSL, NSLF and YLSF. How-

ever, these three had low but significant negative correlations with yield-related traits under

low input field management conditions. These results suggest that whereas some Black Siga-

toka resistant genotypes give good yield, others produce inferior fruits. Reduction in functional

leaves and photosynthetic area has been shown to impact banana yield potential [7]. Tushe-

mereirwe [36] indicated that Black Sigatoka reduced yield of EAHB by more than 30%. Our

results show that under high input field management conditions, the impact of the disease on

yield traits was less severe (Tables 1 and 2). This result is in agreement with Mobambo et al.

[37] who reported that soil fertility had an effect on host plant response to Black Sigatoka and

yield in plantains. The symptoms of Black Sigatoka often increase after flowering probably

because at that time the ability of a plant to withstand the fungal attack is lowered as it commits

most of the energy and resources to the developing inflorescence. Some genotypes had no

functional leaves at harvest, indicating that they were very susceptible to Black Sigatoka after

flowering. Selection of hybrids based on the number of functional leaves at harvest as a mea-

sure of resistance to Black Sigatoka should be done with caution because of the negative associ-

ation between foliar symptoms to Black Sigatoka and fruit filling.

The present study shows that based on yield and growth traits, four groups of bananas

existed in the training population that is, genotypes with high INSL and good fruit filling, high

INSL with poor fruit filling, low INSL with good fruit filling and low INSL with poor fruit fill-

ing representing the four planes of the two components. However, PCA could not resolve the

population structure into clear-cut clusters due to complex pedigrees, although Osuji et al.

[38] used this approach to distinguish between different Musa triploids. This phenomenon

could be attributed to differences in carbon source to sink capacities.

Plant physiological studies have shown that the balance between source and sink transloca-

tion of photosynthetic assimilates is key to plant productivity [39]. In bananas, Dens et al. [40]

demonstrated the effect of manipulating the carbon source (C-source) and carbon sink (C-

sink) of mother plant on ratoon crops in cv. ‘Williams’ and cv. ‘Grand Nain’ at a mat level.

Their results showed genotype and environmental effect on flowering time, plant height and

bunch size for the first ratoon crop. They concluded that the bunch was a larger C-sink than

the ratoon crop. At individual plant level, it is likely that difference in C-source to C-sink

capacity exists in bananas because our results showed that poor fruit filling genotypes were not
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significantly affected by cycle and field inputs. It can be postulated that when plants have a

strong C-sink capacity they tend to have high yield with increased leaf senescence, while those

with low C-sink capacity maintain many leaves with low yield at harvest. More physiological

studies in banana are required to shed light on this aspect. It has been reported that at the time

of flowering, the fruits and seeds became major sinks and any factor that reduces translocation

of photosynthetic assimilates to fruits reduces the harvest index [41].

The training population consisted of poor and good fruit filling genotypes based on FL, FC,

FRD and PLD. This characteristic was consistent across cycles and field management, with

two overlapping peaks in a binary pattern (S1A Fig). However, given the consistence of the

traits under different field conditions, there is likelihood that fruit filling is under control of

one or few major-effect quantitative trait loci (QTL). Given that the training population was

not a classical bi-parental mapping population this argument may not hold, but investigations

using genome wide association studies while accounting for pedigree effect [42] may help to

unravel the underlying genetic mechanisms using genome-wide markers such as SNPs.

This study did not find sufficient evidence to show that absolute apical dominance existed

in our training population. Different levels of sucker regulation (1–25 suckers) were observed

in different cross combinations. This result is in agreement with the observation made by

Ortiz and Vuylsteke [43] that non-apical dominance genes were fixed in AA genotypes of

Musa.

GxE interaction

The effects of cycle and field input management on the genotype and how the genotype inter-

acted with these two aspects of the environment were evaluated. The effect of cross combina-

tion was also assessed. Based on coefficients of determination and analysis of variance,

genotype, cycle, field and their interactions had different levels of effect on trait variation

among cross combinations and individual genotypes. While PHF and PG significantly

increased at cycle 2, field management did not have a significant effect on these traits. This

could be attributed to the fact that the suckers used were at different physiological maturity.

Yield traits were also affected by cycle but the bi-modal distribution was maintained. When

bananas are planted in the field they first undergo an establishment phase and build reserves

that can accelerate growth of the daughter plants. Therefore, cycle 2 is best to compare geno-

types especially with regard to yield traits. Tushemereirwe et al. [16] reported a cycle effect on

traits when they analyzed some advanced hybrids, but it was not fully known whether this

behavior occurred in different banana genotypes. The effect of cycle alone varied across traits

depending on field management except for PED, HTSF and INSL that were most stable. It

should however be noted that under optimum field management the cycle explains a small

proportion of trait variation in genotypes because most traits had coefficient of determination

values below 0.4 in GS2.

The present results show that different banana traits may have different genetic architecture

with some traits influenced by GxE. In marker assisted selection this can hamper deployment

of classical marker technologies that rely on identifying QTLs. Approaches such as genomic

selection that utilize genome-wide markers in complex populations such as in this study

provide an opportunity to dissect such traits and could be exploited by banana breeders to

increase genetic gain per unit time. Genotype by environment interaction has been shown to

affect the accuracy of genomic selection models [24, 44]. Therefore, understanding genotype

trait variation across different environments is paramount.

Many hybrids generated from crossbreeding usually have inferior fruit size irrespective of

the ploidy level. Such inferiority has been attributed to linkage drag from wild diploids [45].
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Bananas have a long selection cycle, they are labor intensive, costly and require large land area

for evaluation. Any technology that can discriminate the inferior genotypes from the good

ones at a nursery stage could save a lot of resources and time for the breeders thus increasing

the breeding efficiency. With the availability of the Musa reference genome [46, 47] and

decreasing costs of next generation sequencing technologies, high density marker technologies

such as genotyping by sequencing are available for many plant species [48]. This provides an

opportunity to investigate the application of genomic selection in banana breeding.

Performance of cross combinations

The true breeding value of a genotype is determined by the quality of hybrids produced when

it is involved in a cross. By comparing the responses to selection (R) and selection differentials

(S) of sixteen cross combinations it was concluded that no single cross combination presented

all the good qualities targeted by the breeders in hybrids. This further explains the complex

trait variation observed within study population. No attempt was made to determine heritabil-

ity of the traits because of unbalanced design and the possibility of confounding from heterosis

[31]. Some hybrids that had many active leaves at harvest showed variation in fruit filling.

Performance of the hybrids was greatly influenced by the male parent involved in the cross.

Although both diploids and tetraploids had 50% segregation opportunity, the tetraploids were

genetically very similar, whereas the diploids were more genetically diverse with the exception

of SH3217 and SH3362 that were closely related. Crosses involving diploid SH3217, SH3362

and 9128–3 produced hybrids which were superior in yield compared to other crosses. These

diploids are parthenocarpic, with big fruits and many hands (clusters) per bunch. The best

cross combination was C10 (120K-1 x SH3217) that produced hybrids that were fairly resistant

to Black Sigatoka, high yielding and quick maturing. Despite the susceptibility of 1201K-1 par-

ent to Black Sigatoka, segregation was observed and some hybrids that had some acceptable

levels of resistance were produced.

Tenkouano et al. [49] reported a 4-fold contribution of male parents toward yield traits

while Rowe and Rosales [50] highlighted that breeding for improved diploids with pest and

disease resistance, parthenocarpy and good yield was the best strategy in banana improvement.

Gene pyramiding has also been suggested so that multiple introgressions of good traits are

possible [51]. Most of the improved varieties produced by crossbreeding are triploid and all

assumed to be completely sterile but no research has been conducted to evaluate their fertility.

Further improvement of these triploids is necessary given that no single hybrid has all traits

desired by farmers and consumers. The 2x by 2x hybrids were all diploid and some had sizable

bunches compared to other diploids in the core breeding set, i.e. could be interesting as

improved 2x parents. Further evaluation of these diploids for pollen viability and partheno-

carpy will be necessary before they are incorporated in the core breeding set despite their long

maturity period. Hybrids that take four months to mature may be considered quick maturing,

given that the majority take more than four months.

Genetic diversity of GS training population

Whereas principal component analysis on cross combinations and individual genotypes

showed that high genetic diversity existed in the training population, its power to resolve the

structure of the population into clear-cut clusters that make biological sense was limited. This

was attributed to complex pedigrees in the population with 77 cross combinations represented.

The half-sib families were closely related to one another with which they shared a common

parent. The population was interconnected due to shared parents in their pedigree. Use of

SSR markers proved valuable in delineating the population structure that could be easily
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interpreted. The set of markers used was reported to be informative and has been used on gen-

otyping the banana collection from the International Transit Center [32]. The polymorphism

information content (PIC) of 0.87 was high enough to resolve even the closest genotypes. Up

to ten unique clusters were resolved and results showed that clustering was mostly influenced

by the genetic diversity in diploid parents.

Triploid EAHB and tetraploids derived from them by crossing with cv. ‘Calcutta 4’ formed

two distinct but closely related clusters, supporting the hypothesis of production of unreduced

3n and reduced n gametes during meiotic events in the tetraploid progenitors [52]. Despite the

high PIC of the markers, the EAHB showed a very low genetic diversity consistent with the

hypothesis that this group of bananas is an ancient clone set [9]. Even with a high number of

polymorphic SSR markers Kitavi et al. and Karamura et al. [9, 53] failed to separate this group

into the corresponding phenotype-based clone sets of Karamura [1]. However, some genetic

differences were observed between some individual genotypes that could be attributed to

mutations within this ancient clone set. The population was predominated with genetic intro-

gression from cv. ‘Calcutta 4’. Hybrids from M. acuminata ssp. malaccensis 250 formed a

distinct cluster. Three tetraploids presumed to be arising from a cross of EAHB with ssp.

malaccensis 250 grouped together with those derived from EAHB by cv. ‘Calcutta 4’. The pres-

ence of Calcutta 4-specific alleles in these tetraploids and the absence of ssp. malaccensis 250

specific alleles suggest that these hybrids are progeny of EAHB by cv. ‘Calcutta 4’ hence the

high genetic relationship with the rest of the tetraploids. Nevertheless, these tetraploids should

be tested as parents to determine their breeding values so that the breeding genetic pool is

expanded.

The SSR markers proved useful in identifying duplicates and closely related genotypes

based on pedigree background. A combination of highly polymorphic SSR markers and the

power of Ward’s clustering method that minimizes the within-group dispersion [34] in the

Euclidean space helped to resolve the structure of the population that was highly interlinked

by pedigree background. The high level of genetic complexity observed in this population rep-

resents different recombination events that make it suitable as a training population for geno-

mic selection.

Apart from obtaining important data on the banana GS training population, important les-

sons were learned during the course of this work. Dedicated efforts are required to understand

the genome organization of bananas through cytological approaches. Ploidy analysis should be

routinely employed in breeding programs to differentiate ploidy levels so that different selec-

tion criteria are used to select hybrids intended for the breeding pipeline from those eligible

for variety release. Despite a majority of the improved hybrids being triploids, their fertility

should be tested so that further improvements can be made on them as a way to achieve gene

pyramiding while minimizing inbreeding.

Conclusion

The response of genotype trait expression to cycle and field management practices varied

greatly. The largest proportion of genetic variation was due to the greater genetic diversity of

male parents used in crosses since the tetraploids used in the majority of crosses as female

parents were genetically related. Yield traits accounted for 31–35% of the total principal com-

ponent variation observed in the population and were loaded on the first component while

vegetative traits contributed to the second component with 15–22%. A high level of correlation

within vegetative- and yield-related traits was observed but correlation between vegetative and

yield traits was low and depended on the interaction with field management practices. There-

fore, genomic selection models could be developed for traits that are easy to measure. It is
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likely that the predictive ability of traits that are difficult to phenotype will be similar to traits

easily measured but highly correlated. The study population was observed to be genetically

diverse with complex pedigree structure. Yield-related traits showed a bi-modal distribution,

which was not influenced by cycle or field management. Resistance to Black Sigatoka was also

stable across cycles but varied under different field management depending on the genotype.

Principal component analysis could not delineate this complex population structure but the

application of SSR markers in combination with Ward’s hierarchical clustering proved power-

ful and resolved the structure into biologically meaningful groups.
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S1 Table. List of genotypes in the genomic selection training population 

S/No Cross Genotype name Female parent Male parent Ploidy Description 

       

1  Enzirabahima   3x Parent 

2  Kabucuragye   3x Parent 

3  Tereza   3x Parent 

4  Enyeru   3x Parent 

5  Nakayonga   3x Parent 

6  Namwezi   3x Parent 

7  Entukura   3x Parent 

8  Nakasabira   3x Parent 

9  Nakawere   3x Parent 

10  Nante   3x Parent 

11  Kazirakwe   3x Parent 

12  Nfuuka   3x Parent 

13  Calcutta 4   2x Parent 

14 C45 1201K-1 Nakawere Calcutta 4 4x Parent 

15 C41 917K-2 Enzirabahima Calcutta 4 4x Parent 

16 C41 660K-1 Enzirabahima Calcutta 4 4x Parent 

17 C40 1438K-1 Entukura Calcutta 4 4x Parent 

18 C51 222K-1 Nfuuka Calcutta 4 4x Parent 

19 C49 376K-7 Nante Calcutta 4 4x Parent 

20 C67 365K-1 Kabucuragye Calcutta 4 4x Parent 

21 C40 401K-1 Entukura Calcutta 4 4x Parent 

22 C66 2180K-6   2x Parent 

23 C53 8075-7 SH3362 Calcutta 4 2x Parent 

24 C54 7197-2 SH3362 Long Tavoy 2x Parent 

25 C63 SH3142 SH1734 Pisang Jari Buaya 2x Parent 

26 C64 SH3362 SH3217 SH3142 2x Parent 

27 C52 SH3217 SH2095 SH2766 2x Parent 

28 C43 5610S-1 Kabucuragye 7197-2 2x Parent 

29 C65 9128-3 Tjau lagada Pisang lilin 2x Parent 

30 C57 1968-2 Who-gu Calcutta 4 3x Parent 

31 C48 861S-1 Namwezi Calcutta 4 2x Parent 

32  cv. Rose   2x Parent 

33  Pisang Lilin   2x Parent 

34  Kokopo   2x Parent 

35  Long Tavoy   2x Parent 

36  malaccensis 250   2x Parent 

37 C01 28165S-1 1201K-1 1968-2 3x Hybrid 

38 C02 25583S-2 1201K-1 5610S-1 3x Hybrid 

39 C02 26660S-1 1201K-1 5610S-1 3x Hybrid 

40 C02 28434S-9 1201K-1 5610S-1 3x Hybrid 

41 C68 17503S-3 1201K-1 7197-2 3x Hybrid 

42 C03 16242S-1 1201K-1 8075-7 3x Hybrid 

43 C04 12479S-1 1201K-1 9128-3 3x Hybrid 



44 C04 12479S-13 1201K-1 9128-3 3x Hybrid 

45 C04 26317S-1 1201K-1 9128-3 3x Hybrid 

46 C04 27262S-1 1201K-1 9128-3 3x Hybrid 

47 C04 27262S-3 1201K-1 9128-3 3x Hybrid 

48 C05 27770S-20 1201K-1 cv. Rose 3x Hybrid 

49 C05 27770S-4 1201K-1 cv. Rose 3x Hybrid 

50 C05 27935S-1 1201K-1 cv. Rose 3x Hybrid 

51 C05 27960S-1 1201K-1 cv. Rose 3x Hybrid 

52 C05 28036S-11 1201K-1 cv. Rose 3x Hybrid 

53 C05 28036S-2 1201K-1 cv. Rose 3x Hybrid 

54 C05 28164S-3 1201K-1 cv. Rose 3x Hybrid 

55 C05 28246S-4 1201K-1 cv. Rose 3x Hybrid 

56 C05 28246S-7 1201K-1 cv. Rose 3x Hybrid 

57 C05 27935S-7 1201K-1 cv. Rose 3x Hybrid 

58 C06 26363S-1 1201K-1 Kokopo 3x Hybrid 

59 C07 26075S-6 1201K-1 Long Tavoy 3x Hybrid 

60 C07 26075S-7 1201K-1 Long Tavoy 3x Hybrid 

61 C07 26075S-8 1201K-1 Long Tavoy 3x Hybrid 

62 C08 27346S-2 1201K-1 malaccensis 250 3x Hybrid 

63 C08 27346S-4 1201K-1 malaccensis 250 3x Hybrid 

64 C08 27437S-1 1201K-1 malaccensis 250 3x Hybrid 

65 C08 27579S-1 1201K-1 malaccensis 250 3x Hybrid 

66 C08 27579S-3 1201K-1 malaccensis 250 3x Hybrid 

67 C08 28030S-2 1201K-1 malaccensis 250 3x Hybrid 

68 C08 28030S-6 1201K-1 malaccensis 250 3x Hybrid 

69 C08 28071S-1 1201K-1 malaccensis 250 3x Hybrid 

70 C08 28465S-2 1201K-1 malaccensis 250 3x Hybrid 

71 C08 28465S-21 1201K-1 malaccensis 250 3x Hybrid 

72 C08 28479S-2 1201K-1 malaccensis 250 3x Hybrid 

73 C10 26337S-22A 1201K-1 SH3217 3x Hybrid 

74 C10 26337S-40 1201K-1 SH3217 3x Hybrid 

75 C11 26840S-7 1201K-1 SH3362 2x Hybrid 

76 C09 26315S-1 1201K-1 SH3142 3x Hybrid 

77 C10 12419S-13 1201K-1 SH3217 3x Hybrid 

78 C10 26337S-11A 1201K-1 SH3217 3x Hybrid 

79 C10 26337S-2 1201K-1 SH3217 3x Hybrid 

80 C10 26337S-34 1201K-1 SH3217 3x Hybrid 

81 C10 26337S-37 1201K-1 SH3217 3x Hybrid 

82 C10 26337S-39 1201K-1 SH3217 3x Hybrid 

83 C10 26337S-43 1201K-1 SH3217 3x Hybrid 

84 C10 28263S-2 1201K-1 SH3217 3x Hybrid 

85 C11 12618S-1 1201K-1 SH3362 3x Hybrid 

86 C11 26316S-7 1201K-1 SH3362 3x Hybrid 

87 C11 26840S-10 1201K-1 SH3362 3x Hybrid 

88 C58 25328S-3 1438K-1 1537K-1 3x Hybrid 



89 C12 24948S-10 1438K-1 5610S-1 3x Hybrid 

90 C12 24948S-13 1438K-1 5610S-1 3x Hybrid 

91 C12 24948S-24 1438K-1 5610S-1 3x Hybrid 

92 C12 24948S-9 1438K-1 5610S-1 3x Hybrid 

93 C69 26060S-1 1438K-1 9128-3 3x Hybrid 

94 C70 13573S-1 1438K-1 9719-7 3x Hybrid 

95 C13 27914S-1 1438K-1 cv. Rose 3x Hybrid 

96 C13 27914S-13 1438K-1 cv. Rose 3x Hybrid 

97 C13 28095S-1 1438K-1 cv. Rose 3x Hybrid 

98 C13 27264S-2 1438K-1 cv. Rose 2x Hybrid 

99 C13 27914S-24 1438K-1 cv. Rose 3x Hybrid 

100 C13 27914S-26 1438K-1 cv. Rose 3x Hybrid 

101 C13 27914S-3 1438K-1 cv. Rose 3x Hybrid 

102 C14 25474S-1 1438K-1 Kokopo 3x Hybrid 

103 C15 26369S-4 1438K-1 Long Tavoy 3x Hybrid 

104 C16 28481S-1 1438K-1 malaccensis 250 3x Hybrid 

105 C16 28561S-2 1438K-1 malaccensis 250 3x Hybrid 

106 C19 26725S-1 1438K-1 SH3362 3x Hybrid 

107 C17 25499S-7 1438K-1 SH3142 3x Hybrid 

108 C18 26039S-2 1438K-1 SH3217 3x Hybrid 

109 C20 26466S-2 1977K-1 5610S-1 3x Hybrid 

110 C20 26466S-5 1977K-1 5610S-1 3x Hybrid 

111 C71 22598S-2 365K-1 1201K-1 3x Hybrid 

112 C59 14539S-4 365K-1 660K-1 3x Hybrid 

113 C21 9750S-13 401K-1 9128-3 3x Hybrid 

114 C22 25031S-1 5610S-1 2180K-6 2x Hybrid 

115 C22 25031S-15 5610S-1 2180K-6 2x Hybrid 

116 C22 25031S-16 5610S-1 2180K-6 2x Hybrid 

117 C22 25031S-17 5610S-1 2180K-6 2x Hybrid 

118 C22 25031S-19 5610S-1 2180K-6 2x Hybrid 

119 C22 25031S-27 5610S-1 2180K-6 2x Hybrid 

120 C22 25031S-33 5610S-1 2180K-6 2x Hybrid 

121 C22 25031S-34 5610S-1 2180K-6 2x Hybrid 

122 C22 25031S-7 5610S-1 2180K-6 2x Hybrid 

123 C24 24583S-2 660K-1 5610S-1 3x Hybrid 

124 C24 26260S-3 660K-1 5610S-1 3x Hybrid 

125 C25 13284S-1 660K-1 9128-3 3x Hybrid 

126 C25 25371S-2 660K-1 9128-3 3x Hybrid 

127 C25 9187S-8 660K-1 9128-3 3x Hybrid 

128 C26 26709S-1 660K-1 Calcutta 4 3x Hybrid 

129 C27 27713S-1 660K-1 malaccensis 250 3x Hybrid 

130 C27 27825S-4 660K-1 malaccensis 250 3x Hybrid 

131 C27 27873S-18 660K-1 malaccensis 250 3x Hybrid 

132 C27 27873S-38 660K-1 malaccensis 250 3x Hybrid 

133 C27 27873S-4 660K-1 malaccensis 250 3x Hybrid 



134 C27 27873S-5 660K-1 malaccensis 250 3x Hybrid 

135 C27 28188S-2 660K-1 malaccensis 250 3x Hybrid 

136 C28 25623S-11 8817S-1 917K-2 3x Hybrid 

137 C29 28492S-1 917K-2 1968-2 3x Hybrid 

138 C30 26998S-1 917K-2 2180K-6 3x Hybrid 

139 C30 27074S-1 917K-2 2180K-6 3x Hybrid 

140 C31 25117S-1 917K-2 5610S-1 3x Hybrid 

141 C31 25117S-2 917K-2 5610S-1 3x Hybrid 

142 C31 25117S-3 917K-2 5610S-1 3x Hybrid 

143 C31 25508S-1 917K-2 5610S-1 3x Hybrid 

144 C31 25628S-11 917K-2 5610S-1 3x Hybrid 

145 C31 26815S-3 917K-2 5610S-1 3x Hybrid 

146 C31 26815S-8 917K-2 5610S-1 3x Hybrid 

147 C31 26815S-9 917K-2 5610S-1 3x Hybrid 

148 C31 26990S-10 917K-2 5610S-1 3x Hybrid 

149 C31 26990S-11 917K-2 5610S-1 3x Hybrid 

150 C31 26990S-4 917K-2 5610S-1 3x Hybrid 

151 C31 27073S-1 917K-2 5610S-1 3x Hybrid 

152 C31 27744S-1 917K-2 5610S-1 3x Hybrid 

153 C60 12949S-2 917K-2 7197-2 3x Hybrid 

154 C60 25909S-3 917K-2 7197-2 3x Hybrid 

155 C32 25089S-4 917K-2 861S-1 3x Hybrid 

156 C33 19798S-2 917K-2 9128-3 3x Hybrid 

157 C33 24434S-3 917K-2 9128-3 3x Hybrid 

158 C33 25435S-11 917K-2 9128-3 3x Hybrid 

159 C33 25435S-4 917K-2 9128-3 3x Hybrid 

160 C33 25737S-1 917K-2 9128-3 3x Hybrid 

161 C33 26288S-4 917K-2 9128-3 3x Hybrid 

162 C33 26975S-1 917K-2 9128-3 3x Hybrid 

163 C33 26975S-2 917K-2 9128-3 3x Hybrid 

164 C33 7798S-2 917K-2 9128-3 3x Hybrid 

165 C34 27184S-4 917K-2 cv. Rose 3x Hybrid 

166 C34 27885S-9 917K-2 cv. Rose 3x Hybrid 

167 C34 27184S-8 917K-2 cv. Rose 3x Hybrid 

168 C34 27494S-12 917K-2 cv. Rose 3x Hybrid 

169 C34 27494S-4 917K-2 cv. Rose 3x Hybrid 

170 C34 27494S-5 917K-2 cv. Rose 3x Hybrid 

171 C34 28068S-9 917K-2 cv. Rose 3x Hybrid 

172 C34 27184S-6 917K-2 cv. Rose 3x Hybrid 

173 C34 27885S-1 917K-2 cv. Rose 3x Hybrid 

174 C35 24410S-2 917K-2 Kokopo 3x Hybrid 

175 C36 25680S-11 917K-2 Long Tavoy 3x Hybrid 

176 C36 25680S-13 917K-2 Long Tavoy 3x Hybrid 

177 C37 27261S-1 917K-2 malaccensis 250 3x Hybrid 

178 C37 27261S-10 917K-2 malaccensis 250 3x Hybrid 



179 C37 27261S-11 917K-2 malaccensis 250 3x Hybrid 

180 C37 27334S-5 917K-2 malaccensis 250 3x Hybrid 

181 C37 27401S-1 917K-2 malaccensis 250 3x Hybrid 

182 C37 27524S-12A 917K-2 malaccensis 250 3x Hybrid 

183 C37 27524S-12B 917K-2 malaccensis 250 3x Hybrid 

184 C37 27524S-22 917K-2 malaccensis 250 3x Hybrid 

185 C37 27524S-30 917K-2 malaccensis 250 3x Hybrid 

186 C37 27833S-10 917K-2 malaccensis 250 3x Hybrid 

187 C37 27833S-13 917K-2 malaccensis 250 3x Hybrid 

188 C37 27886S-5 917K-2 malaccensis 250 3x Hybrid 

189 C37 28033S-14 917K-2 malaccensis 250 3x Hybrid 

190 C37 28033S-15 917K-2 malaccensis 250 3x Hybrid 

191 C37 28033S-18 917K-2 malaccensis 250 3x Hybrid 

192 C37 28033S-23 917K-2 malaccensis 250 3x Hybrid 

193 C37 28033S-3 917K-2 malaccensis 250 3x Hybrid 

194 C37 28060S-8 917K-2 malaccensis 250 3x Hybrid 

195 C37 28200S-3 917K-2 malaccensis 250 3x Hybrid 

196 C37 28257S-1 917K-2 malaccensis 250 3x Hybrid 

197 C37 28257S-2 917K-2 malaccensis 250 3x Hybrid 

198 C37 28257S-4 917K-2 malaccensis 250 3x Hybrid 

199 C37 28432S-19 917K-2 malaccensis 250 3x Hybrid 

200 C37 28432S-20 917K-2 malaccensis 250 3x Hybrid 

201 C37 28432S-3 917K-2 malaccensis 250 3x Hybrid 

202 C37 28780S-1 917K-2 malaccensis 250 3x Hybrid 

203 C61 26874S-5 917K-2 SH3362 3x Hybrid 

204 C38 12468S-18 917K-2 SH3217 3x Hybrid 

205 C38 12477S-13 917K-2 SH3217 3x Hybrid 

206 C38 8386S-19 917K-2 SH3217 3x Hybrid 

207 C61 13522S-5 917K-2 SH3362 3x Hybrid 

208 C61 25974S-? 917K-2 SH3362 3x Hybrid 

209 C61 25974S-19 917K-2 SH3362 3x Hybrid 

210 C61 25974S-21 917K-2 SH3362 3x Hybrid 

211 C61 25974S-30 917K-2 SH3362 3x Hybrid 

212 C61 25974S-35 917K-2 SH3362 3x Hybrid 

213 C61 26666S-1 917K-2 SH3362 3x Hybrid 

214 C61 28476S-7 917K-2 SH3362 3x Hybrid 

215 C61 9494S-10 917K-2 SH3362 3x Hybrid 

216 C62 16457S-2 Entukura 365K-1 3x Hybrid 

217 C39 26540S-182 Entukura 8075-7 2x Hybrid 

218 C41 28260S-2 Enzirabahima Calcutta 4 3x Hybrid 

219 C72 21086S-1 Kazirakwe 7197-2 3x Hybrid 

220 C46 28073S-1 Namwezi 7197-2 3x Hybrid 

221 C55 25356S-1 Tereza 7197-2 3x Hybrid 

222 C75 HB unknown unknown 3x Hybrid 

223 C76 HJ unknown unknown 3x Hybrid 



224 C77 HX unknown unknown 3x Hybrid 

225 C10 26337S-11B 1201K-1 SH3217 3x Hybrid 

226 C73 16285S-13 Calcutta 4 660K-1 2x Hybrid 

227 C10 26337S-22B 1201K-1 SH3217 3x Hybrid 

228 C73 16285S-3 Calcutta 4 660K-1 2x Hybrid 

229 C10 26337S-28 1201K-1 SH3217 3x Hybrid 

230 C14 25066S-1 1438K-1 Kokopo 3x Hybrid 

231 C73 16285S-6 Calcutta 4 660K-1 2x Hybrid 

232 C14 25066S-2 1438K-1 Kokopo 3x Hybrid 

233 C73 16285S-8 Calcutta 4 660K-1 2x Hybrid 

234 C61 25974S-11 917K-2 SH3362 3x Hybrid 

235 C61 25974S-15 917K-2 SH3362 3x Hybrid 

236 C14 25457S-1 1438K-1 Kokopo 3x Hybrid 

237 C74 16191S-6 Calcutta 4 917K-2 2x Hybrid 

238 C35 24797S-7 917K-2 Kokopo 3x Hybrid 

239 C35 25102S-1 917K-2 Kokopo 3x Hybrid 

240 C44 28452S-11 Nakasabira Calcutta 4 3x Hybrid 

241 C37 28033S-9 917K-2 malaccensis 250 3x Hybrid 

242 C61 25974S-13 917K-2 SH3362 3x Hybrid 

243 C34 28256S-1 917K-2 cv. Rose 3x Hybrid 

244 C61 25974S-17 917K-2 SH3362 4x Hybrid 

245 C38 12468S-6 917K-2 SH3217 3x Hybrid 

246 C13 27914S-11 1438K-1 cv. Rose 3x Hybrid 

247 C13 27914S-18 1438K-1 cv. Rose 3x Hybrid 

248 C13 27914S-21 1438K-1 cv. Rose 3x Hybrid 

249 C13 27914S-22 1438K-1 cv. Rose 3x Hybrid 

250 C13 27914S-6 1438K-1 cv. Rose 3x Hybrid 

251 C13 27914S-7 1438K-1 cv. Rose 3x Hybrid 

252 C13 27914S-8 1438K-1 cv. Rose 3x Hybrid 

253 C27 27873S-12 660K-1 malaccensis 250 3x Hybrid 

254 C27 27873S-14 660K-1 malaccensis 250 3x Hybrid 

255 C27 27873S-17 660K-1 malaccensis 250 3x Hybrid 

256 C27 27873S-33 660K-1 malaccensis 250 3x Hybrid 

257 C27 27873S-37 660K-1 malaccensis 250 3x Hybrid 

258 C27 27873S-7 660K-1 malaccensis 250 3x Hybrid 

259 C11 26224S-3 1201K-1 SH3362 3x Hybrid 

260 C11 26840S-9 1201K-1 SH3362 3x Hybrid 

261 C11 26316S-14 1201K-1 SH3362 3x Hybrid 

262 C11 26224S-2 1201K-1 SH3362 3x Hybrid 

263 C11 26840S-5 1201K-1 SH3362 3x Hybrid 

264 C09 25653S-3 1201K-1 SH3142 3x Hybrid 

265 C09 26315S-3 1201K-1 SH3142 3x Hybrid 

266 C06 28528S-1 1201K-1 Kokopo 3x Hybrid 

267 C15 26369S-8 1438K-1 Long Tavoy 3x Hybrid 

268 C19 26530S-1 1438K-1 SH3362 3x Hybrid 



2x = diploid, 3x = triploid and 4x = tetraploid 

269 C16 27528S-1 1438K-1 malaccensis 250 3x Hybrid 

270 C16 27915S-3 1438K-1 malaccensis 250 3x Hybrid 

271 C16 28561S-5 1438K-1 malaccensis 250 3x Hybrid 

272 C16 27915S-2 1438K-1 malaccensis 250 3x Hybrid 

273 C16 28974S-11 1438K-1 malaccensis 250 3x Hybrid 

274 C16 28974S-15 1438K-1 malaccensis 250 3x Hybrid 

275 C16 28974S-22 1438K-1 malaccensis 250 3x Hybrid 

276 C16 28974S-29 1438K-1 malaccensis 250 3x Hybrid 

277 C23 29114S-14A 5610S-1 malaccensis 250 2x Hybrid 

278 C23 29114S-14B 5610S-1 malaccensis 250 3x Hybrid 

279 C23 29114S-19 5610S-1 malaccensis 250 3x Hybrid 

280 C23 29114S-24 5610S-1 malaccensis 250 3x Hybrid 

281 C27 27873S-26 660K-1 malaccensis 250 3x Hybrid 

282 C27 27873S-31 660K-1 malaccensis 250 3x Hybrid 

283 C27 29165S-5 660K-1 malaccensis 250 3x Hybrid 

284 C40 28506S-1 Entukura Calcutta 4 3x Hybrid 

285 C47 29364S-2 Namwezi cv. Rose 4x Hybrid 

286 C50 28077S-5 Nfuuka 8075-7 3x Hybrid 

287 C05 28164S-15 1201K-1 cv. Rose 3x Hybrid 

288 C05 29285S-20 1201K-1 cv. Rose 3x Hybrid 

289 C10 26337S-32 1201K-1 SH3217 3x Hybrid 

290 C11 27684S-5 1201K-1 SH3362 3x Hybrid 

291 C12 24948S-12 1438K-1 5610S-1 3x Hybrid 

292 C12 24948S-21 1438K-1 5610S-1 3x Hybrid 

293 C12 24948S-27 1438K-1 5610S-1 3x Hybrid 

294 C12 29586S-4 1438K-1 5610S-1 3x Hybrid 

295 C12 24948S-22 1438K-1 5610S-1 3x Hybrid 

296 C12 24948S-2 1438K-1 5610S-1 3x Hybrid 

297 C12 24948S-29 1438K-1 5610S-1 3x Hybrid 

298 C29 26820S-1 917K-2 1968-2 3x Hybrid 

299 C32 25474S-5 917K-2 861S-1 3x Hybrid 

300 C61 25974S-18 917K-2 SH3362 3x Hybrid 

301 C61 28476S-8 917K-2 SH3362 3x Hybrid 

302 C61 25974S-31 917K-2 SH3362 3x Hybrid 

303 C42 29275S-1 Enzirabahima malaccensis 250 4x Hybrid 

304 C42 29275S-4 Enzirabahima malaccensis 250 4x Hybrid 

305 C42 29275S-5 Enzirabahima malaccensis 250 4x Hybrid 

306 C55 29636S-1 Tereza 7197-2 4x Hybrid 

307 C56 28776S-2 Tereza 8075-7 3x Hybrid 



 S3 Table: Summary of all trait variations in response to cycle and field 

management. 

Dep. variable Indep. variable Sum Sq Df F value Pr(>F) 

NSLF Clone 3901.23 306 3.63 <0.0001 

 Field 4.67 1 1.33 0.2492 

 Clone:Field 1360.46 284 1.36 0.0001 

 Cycle 2.63 1 0.69 0.4052 

 Clone:Cycle 1174.64 299 1.04 0.3283 

YLSF Clone 4790.39 306 4.50 <0.0001 

 Field 2.63 1 0.75 0.3852 

 Clone:Field 1483.14 284 1.50 <0.0001 

 Cycle 0.00 1 0.00 1.0000 

 Clone:Cycle 1102.33 299 0.85 0.9669 

PHF Clone 2222889.11 306 3.77 <0.0001 

 Field 1126.34 1 0.58 0.4449 

 Clone:Field 432297.46 284 0.79 0.9947 

 Cycle 8714.88 1 8.25 0.0041 

 Clone:Cycle 332846.71 299 1.05 0.2662 

PG Clone 73176.82 306 4.30 <0.0001 

 Field 1.52 1 0.03 0.8686 

 Clone:Field 12061.30 284 0.76 0.9981 

 Cycle 351.48 1 12.11 0.0005 

 Clone:Cycle 13057.24 299 1.51 <0.0001 

HTSF Clone 2151815.75 306 2.96 <0.0001 

 Field 1075.15 1 0.45 0.5014 

 Clone:Field 895154.77 284 1.33 0.0005 

 Cycle 59.52 1 0.02 0.8836 

 Clone:Cycle 976295.15 299 1.18 0.0276 

INSL Clone 116602.02 306 2.44 <0.0001 

 Field 4.96 1 0.03 0.8584 

 Clone:Field 58583.77 284 1.32 0.0005 

 Cycle 141.37 1 0.79 0.3740 

 Clone:Cycle 51026.49 299 0.95 0.6947 

TSsqrt Clone 240.28 305 3.21 <0.0001 

 Field 0.24 1 0.99 0.3204 

 Clone:Field 100.88 282 1.46 <0.0001 

NSLH Clone 4746.65 303 5.14 <0.0001 

 Field 7.50 1 2.46 0.1170 

 Clone:Field 958.14 269 1.17 0.0417 

 Cycle 20.74 1 6.78 0.0093 

 Clone:Cycle 1154.94 276 1.37 0.0002 

YLSH Clone 2261.86 303 4.18 <0.0001 

 Field 3.33 1 1.87 0.1719 

 Clone:Field 649.25 269 1.35 0.0003 

 Cycle 4.14 1 2.01 0.1562 

 Clone:Cycle 579.70 276 1.02 0.4063 



HTSH Clone 2714448.28 303 4.55 <0.0001 

 Field 7053.33 1 3.58 0.0587 

 Clone:Field 1190067.21 269 2.25 <0.0001 

 Cycle 1920.12 1 0.65 0.4196 

 Clone:Cycle 949051.52 276 1.17 0.0408 

BWTsqrt Clone 1213.89 303 12.55 <0.0001 

 Field 1.4 1 4.38 0.0365 

 Clone:Field 126.77 269 1.48 <0.0001 

 Cycle 4.04 1 15.24 <0.0001 

 Clone:Cycle 108.68 276 1.49 <0.0001 

NH Clone 3334.02 303 8.67 <0.0001 

 Field 0.03 1 0.03 0.8713 

 Clone:Field 569.58 269 1.67 <0.0001 

 Cycle 7.43 1 6.01 0.0143 

 Clone:Cycle 429.09 276 1.26 0.0048 

NF Clone 1380508.67 303 5.46 <0.0001 

 Field 112.13 1 0.13 0.7139 

 Clone:Field 333080.59 269 1.49 <0.0001 

 Cycle 4742.88 1 6.13 0.0134 

 Clone:Cycle 262980.73 276 1.23 0.0092 

FL Clone 16284.98 300 13.49 <0.0001 

 Field 33.92 1 8.43 0.0037 

 Clone:Field 1982.34 269 1.83 <0.0001 

 Cycle 5.95 1 1.10 0.2944 

 Clone:Cycle 1328.62 273 0.90 0.8661 

FC Clone 9506.06 300 16.11 0.0000 

 Field 17.79 1 9.04 0.0027 

 Clone:Field 733.66 269 1.39 0.0001 

 Cycle 2.78 1 1.30 0.2548 

 Clone:Cycle 751.00 272 1.29 0.0021 

FRD Clone 1003.46 299 17.55 0.0000 

 Field 2.52 1 13.19 0.0003 

 Clone:Field 139.73 269 2.72 <0.0001 

 Cycle 0.44 1 1.75 0.1866 

 Clone:Cycle 70.74 271 1.04 0.3331 

PLD Clone 865.42 299 17.60 0.0000 

 Field 2.70 1 16.42 <0.0001 

 Clone:Field 68.27 269 1.54 <0.0001 

 Cycle 0.52 1 3.03 0.0820 

 Clone:Cycle 60.55 271 1.29 0.0022 

PED Clone 20.96 299 11.41 <0.0001 

 Field 0.00 1 0.08 0.7799 

 Clone:Field 16.61 269 10.05 <0.0001 

 Cycle 0.00 1 0.13 0.7192 

 Clone:Cycle 3.15 271 0.80 0.9913 

sqrt Original data transformed by square root,  



 

S1 Fig. Variation in fruit characteristics. (A) is a histogram showing the bimodal distribution of fruit 

circumference (FC), (B) cross sections of poor filling fruits, (C) good filling fruits with fruit diameter 

(FRD) and pulp diameter (PLD) values in cm, and (D) poor filling and good filling banana fruits. 
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Introduction
Conventional crossbreeding is the main approach used in banana improvement. However, the method

requires up to two decades of crossing and field evaluation to develop a new hybrid. This is because selection

is carried out at different levels (Fig 1). At every level, plants are evaluated after three crop cycles, each

taking about a year. Yield traits can only be scored at harvest while organoleptic traits are recorded after

harvesting, making the selection process slow, expensive and labour intensive. Molecular tools with the

potential to improve banana breeding efficiency are being investigated. These include genomic selection

(GS), which will benefit breeding through increased genetic gain per unit time (Meuwissen et al. 2001;

Nakaya and Isobe 2009). Understanding trait variation and the correlation among economically important

traits is an essential first step in the development of GS models. In this study we tested the hypothesis that

trait variations in bananas are not affected by cross combination, cycle, field management and their

interaction with genotype.

Materials and Methods
The training population consists of 307 genotypes that include parents and the resulting hybrids. The

population was phenotyped under low (no mulch and NPK fertilizer) and high (mulch + NPK) field input

management at Namulonge research station. Data collected on two crop cycles were analysed using R

statistical software. The correlations and significance of correlations were determined using R package

Hmisc. Analysis of variance was performed to understand the effect of genotype and the interaction between

genotype and cycle, and genotype and field management on trait variation.

Results and Discussion
A high level of correlation among vegetative and yield related traits was observed (Table 1). This could mean

that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are

highly correlated with. Therefore, genomic selection models could be developed for traits that are easily

measured. Table 2 summarizes the genotypic effects and the interaction between genotype and cycle and

genotype and field management on the traits. Black Sigatoka-related traits were not affected by crop cycle.

These could be measured in the first cycle thus reducing on phenotyping burden. Growth traits such as plant

height and girth were the least affected by field input management. Conversely, yield-related traits such as

bunch weight, number of hands and number of fingers were significantly affected by both crop cycle and

field input management. The variation in traits observed suggest that different genomic selection models

should be tested. For traits affected by cycle and field management, models that account for non-additive

genetic effect are likely to have better predictive ability on them. Integration of genomic selection in

crossbreeding allows simultaneous prediction and selection of best hybrids. This is likely to reduce the

selection cycle and increase genetic gain per unit time.

Conclusion
Genomic selection as a form of marker assisted selection is a non-stand alone approach but if integrated into

conventional crossbreeding it has the potential to accelerate the breeding process. The effectiveness of

genomic selection in banana will greatly depend on the prediction accuracy of the genomic selection models.

References
1.Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense

marker maps. Genetics. 2001;157: 1819-1829.
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1303-1316.
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Fig 1: Approaches to hybrid selection in banana breeding program. (A) the classical phenotypic selection of banana hybrids and (B)

integrated genomic selection and phenotypic selection approach being investigated.

Table 1: Pearson’s correlation coefficients of traits under high input field management 

Pant 

height

Plant 

girth

Index of non-

spotted leaf

Bunch 

weight

Number 

of hands

Number 

of fruits

Fruit 

length

Fruit 

circumference

Fruit 

diameter

Plant girth 0.77*

Index of non-spotted leaf 0.21 0.27

Bunch weight 0.37* 0.62* −0.13

Number of hands
0.22 0.42* 0.10 0.52*

Number of fruits
0.37* 0.58* 0.19 0.57* 0.84*

Fruit length 0.20 0.44* −0.15 0.83* 0.28* 0.27*

Fruit circumference 0.33* 0.45* −0.15 0.81* 0.15 0.15 0.85*

Fruit diameter 0.39* 0.48* −0.16 0.79* 0.16 0.18 0.80* 0.97*

Pulp diameter 0.39* 0.45* −0.16 0.74* 0.11 0.13 0.76* 0.94* 0.99*

* Significant correlation with P-value < 0.05

Table 2: Effect of genotype and genotype interaction with cycle and field management on the traits 

Trait Indep. variable Sum Sq Df F value P value

Plant height Genotype 2222889 306 3.77 <0.0001

Genotype x Field 432297 284 0.79 0.995

Genotype x Cycle 332846 299 1.05 0.266

Plant girth Genotype 73176 306 4.30 <0.0001

Genotype x Field 12061 284 0.76 0.998

Genotype x Cycle 13057 299 1.51 <0.0001

Index of non-spotted leaf Genotype 116602 306 2.44 <0.0001

Genotype x Field 58584 284 1.32 0.0005

Genotype x Cycle 51026 299 0.95 0.695

Bunch weight* Genotype 1214 303 12.55 <0.0001

Genotype x Field 127 269 1.48 <0.0001

Genotype x Cycle 109 276 1.49 <0.0001

Number of hands Genotype 3334 303 8.67 <0.0001

Genotype x Field 570 269 1.67 <0.0001

Genotype x Cycle 429 276 1.26 0.005

Number of fruits Genotype 1380509 303 5.46 <0.0001

Genotype x Field 333081 269 1.49 <0.0001

Genotype x Cycle 262981 276 1.23 0.009

* Original data was square root transformed
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Introduction

Conventional crossbreeding is the main approach used in banana improvement. However,

the method requires up to two decades of crossing and field evaluation to develop a new

hybrid. This is because selection is carried out at different levels (Fig 1). At every level,

plants are evaluated after three crop cycles, each taking about a year. Yield traits can only

be scored at harvest while organoleptic traits are recorded after harvesting, making the

selection process slow, expensive and labour intensive. Molecular tools with the potential

to improve banana breeding efficiency are being investigated. These include genomic

selection (GS), which will benefit breeding through increased genetic gain per unit time

(Meuwissen et al. 2001; Nakaya and Isobe 2009). Understanding trait variation and the

correlation among economically important traits is an essential first step in the

development of GS models. In this study we tested the hypothesis that trait variations in

bananas are not affected by cross combination, cycle, field management and their

interaction with genotype.

Materials and Methods

The training population consists of 307 genotypes that include parents and the resulting

hybrids. The population was phenotyped under low (no mulch and NPK fertilizer) and

high (mulch + NPK) field input management at Namulonge research station. Data

collected on two crop cycles were analysed using R statistical software. The correlations

and significance of correlations were determined using R package Hmisc. Analysis of

variance was performed to understand the effect of genotype and the interaction between

genotype and cycle, and genotype and field management on trait variation.

Results and Discussion

A high level of correlation among vegetative and yield related traits was observed (Table 1). This

could mean that the predictive ability of traits that are difficult to phenotype will be similar to less

difficult traits they are highly correlated with. Therefore, genomic selection models could be

developed for traits that are easily measured. Table 2 summarizes the genotypic effects and the

interaction between genotype and cycle and genotype and field management on the traits. Black

Sigatoka-related traits were not affected by crop cycle. These could be measured in the first cycle

thus reducing on phenotyping burden. Growth traits such as plant height and girth were the least

affected by field input management. Conversely, yield-related traits such as bunch weight,

number of hands and number of fingers were significantly affected by both crop cycle and field

input management. The variation in traits observed suggest that different genomic selection

models should be tested. For traits affected by cycle and field management, models that account

for non-additive genetic effect are likely to have better predictive ability on them. Integration of

genomic selection in crossbreeding allows simultaneous prediction and selection of best hybrids.

This is likely to reduce the selection cycle and increase genetic gain per unit time.

Conclusions and Recommendations
Genomic selection as a form of marker assisted selection is a non-stand alone approach but if

integrated into conventional crossbreeding it has the potential to accelerate the breeding

process. The effectiveness of genomic selection in banana will greatly depend on the prediction

accuracy of the genomic selection models.

References
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Fig 1: Approaches to hybrid selection in banana breeding program. (A) the classical phenotypic selection

of banana hybrids and (B) integrated genomic selection and phenotypic selection approach being

investigated.
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Table 1: Pearson’s correlation coefficients of traits under high input field management 

* Significant correlation with P-value < 0.05

* Original data square root transformed

Trait Indep. variable Sum Sq Df F value P value

Plant height Genotype 2222889 306 3.77 <0.0001

Genotype x Field 432297 284 0.79 0.995

Genotype x Cycle 332846 299 1.05 0.266

Plant girth Genotype 73176 306 4.30 <0.0001

Genotype x Field 12061 284 0.76 0.998

Genotype x Cycle 13057 299 1.51 <0.0001

Index of non-spotted 

leaf

Genotype 116602 306 2.44 <0.0001

Genotype x Field 58584 284 1.32 0.0005

Genotype x Cycle 51026 299 0.95 0.695

Bunch weight* Genotype 1214 303 12.55 <0.0001

Genotype x Field 127 269 1.48 <0.0001

Genotype x Cycle 109 276 1.49 <0.0001

Number of hands Genotype 3334 303 8.67 <0.0001

Genotype x Field 570 269 1.67 <0.0001

Genotype x Cycle 429 276 1.26 0.005

Number of fruits Genotype 1380509 303 5.46 <0.0001

Genotype x Field 333081 269 1.49 <0.0001

Genotype x Cycle 262981 276 1.23 0.009

Table 2: Effect of genotype and genotype interaction with cycle and field management on the traits 

Pant 
height

Plant 
girth

Index of 
non-
spotted 
leaf

Bunch 
weight

Number 
of hands

Number 
of fruits

Fruit 
length

Fruit 
circumference

Fruit 
diameter

Plant girth 0.77*

Index of non-
spotted leaf

0.21 0.27

Bunch weight 0.37* 0.62* −0.13

Number of hands
0.22 0.42* 0.10 0.52*

Number of fingers
0.37* 0.58* 0.19 0.57* 0.84*

Fruit length 0.20 0.44* −0.15 0.83* 0.28* 0.27*

Fruit 
circumference

0.33* 0.45* −0.15 0.81* 0.15 0.15 0.85*

Fruit diameter 0.39* 0.48* −0.16 0.79* 0.16 0.18 0.80* 0.97*

Pulp diameter 0.39* 0.45* −0.16 0.74* 0.11 0.13 0.76* 0.94* 0.99*
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Towards	
  Marker	
  Assisted	
  Breeding	
  in	
  Banana	
  
	
  

Introduction 
 

Breeding	
  offers	
  the	
  most	
  sustainable	
  solu4on	
  to	
  most	
  of	
  the	
  crop	
  yield-­‐limi4ng	
  factors	
  

such	
  as	
  pests,	
  diseases	
  and	
  abio4c	
   stress.	
  Crossbreeding	
   is	
   the	
  main	
  approach	
  used	
   in	
  

banana	
   improvement	
   but	
   the	
   method	
   requires	
   up	
   to	
   20	
   years	
   to	
   release	
   a	
   variety.	
  

Integra4on	
   of	
   molecular	
   tools	
   into	
   crossbreeding	
   speeds	
   up	
   variety	
   development	
  

through	
   marker-­‐assisted	
   selec4on	
   (MAS)	
   and	
   genomic	
   selec4on	
   (GS).	
   With	
   these	
  

approaches,	
  banana	
  breeders	
  can	
  shorten	
  the	
  breeding	
  cycle	
  to	
  less	
  than	
  a	
  decade.	
  The	
  

ini4al	
  stage	
  towards	
  MAS	
  is	
  to	
  generate	
  segrega4ng	
  popula4ons	
  followed	
  by	
   	
  mapping	
  

of	
   quan4ta4ve	
   trait	
   loci	
   (QTL)	
   affec4ng	
   target	
   traits	
   using	
   linkage	
  mapping.	
   Genome-­‐

wide	
   associa4on	
   studies	
   (GWAS)	
   are	
   useful	
   in	
   underpinning	
   alleles	
   responsible	
   for	
  

phenotypic	
  varia4on.	
  Given	
  the	
  high	
  cost	
  of	
  phenotyping	
  and	
  the	
  ever-­‐decreasing	
  cost	
  of	
  

genotyping,	
   genomic	
   selec4on	
   (GS)	
   is	
   being	
   considered	
   for	
   rou4ne	
   use	
   in	
   breeding	
  

programs	
   and	
   as	
   such	
   predic4ve	
   genomic	
   selec4on	
  models	
   are	
   being	
   developed.	
   IITA	
  

banana	
  breeding,	
  in	
  collabora4on	
  with	
  other	
  	
  partners,	
  	
  is	
  fully	
  commiNed	
  to	
  developing	
  

an	
  integrated	
  approach	
  to	
  banana	
  improvement	
  with	
  the	
  aim	
  of	
  increasing	
  gene4c	
  gain	
  

per	
  unit	
  4me	
  while	
  reducing	
  the	
  selec4on	
  cycle.	
  	
  

Figure 2: On-going activities related to molecular breeding of bananas within IITA in collaboration with other 
institutions such as NARO, Palacky University, EMBRAPA, and the University of Malaya 

Materials and Methods 
 
Target traits: Fusarium	
  wilt,	
  weevil,	
  burrowing	
  nematode,	
  yield	
  and	
  agronomic	
  traits.	
  
	
  
The	
   nematode	
   segrega4ng	
   popula4on	
   consists	
   of	
   two	
   half-­‐sib	
   popula4ons	
   with	
   one	
  
common	
   male	
   parent	
   (Mbanjo	
   et	
   al.,	
   2012).	
   The	
   weevil	
   segrega4ng	
   popula4on	
   was	
  
derived	
  from	
  selfing	
  the	
  F1	
  progeny	
  of	
  Borneo	
  and	
  Kasasika.	
  The	
  Fusarium	
  segrega4ng	
  
popula4on	
  was	
  derived	
  from	
  selfing	
  F1	
  progeny	
  of	
  8075-­‐7	
  and	
  sukali	
  ndizi.	
  The	
  training	
  
popula4on	
   for	
  GS	
  consists	
  of	
  all	
  breeder’s	
  parental	
   stock	
  used	
  by	
   IITA	
  and	
  NARO	
  and	
  
advanced	
   hybrids	
   and	
   hybrids	
   from	
   early	
   evalua4on	
   trials.	
   	
   DNA	
   from	
   all	
   these	
  
popula4ons	
   was	
   extracted	
   and	
   submiNed	
   to	
   Cornell	
   for	
   sequencing	
   using	
   the	
  
genotyping	
  by	
  sequencing	
  (GBS)	
  approach.	
  	
  On-­‐going	
  ac4vi4es	
  are	
  summarized	
  in	
  figure	
  
2.	
  

Conclusions 
 

In	
   marker	
   assisted	
   breeding,	
   no	
   single	
   marker	
   technique	
   is	
   sufficient	
   to	
   address	
   all	
   the	
  

breeders’	
  ques4ons.	
  In	
  bananas	
  different	
  traits	
  have	
  different	
  mechanisms	
  of	
  gene4c	
  control	
  

ranging	
  from	
  single	
  gene	
  with	
  major	
  effect	
  to	
  mul4ple	
  genes	
  with	
  small	
  addi4ve	
  effects	
  on	
  the	
  

phenotype.	
  The	
  interac4on	
  of	
  genes	
  by	
  environment	
  makes	
  the	
  interpreta4on	
  of	
  results	
  even	
  

more	
   challenging.	
   However,	
  with	
   genomic	
   selec4on	
   this	
   can	
   be	
   corrected	
   for	
   in	
   the	
  model	
  

development	
  once	
  phenotype	
  data	
  is	
  collected	
  in	
  different	
  environments	
  while	
  QTL	
  mapping	
  

could	
   	
   help	
   in	
   selec4on	
   for	
   pest	
   and	
   disease	
   resistance.	
   Despite	
   the	
   challenges,	
   IITA	
   in	
  

collabora4on	
  with	
  other	
  partners	
  is	
  commiNed	
  to	
  the	
  development	
   	
  of	
  pla_orms	
  for	
  marker	
  

assisted	
  breeding	
  in	
  banana	
  as	
  a	
  model	
  polyploid	
  plant.	
  Once	
  a	
  break-­‐through	
  is	
  realized	
  this	
  

will	
   set	
   a	
   precedence	
   for	
   other	
   polyploidy	
   breeding	
   programs	
   to	
   embrace	
  marker	
   assisted	
  

breeding.	
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Figure 1. A simplified depiction of genomic selection model development and application in crossbreeding 

Figure	
  3.	
  A	
  -­‐	
  Part	
  of	
  linkage	
  maps	
  from	
  nematode	
  segrega4ng	
  popula4on	
  generated	
  by	
  Mbanjo	
  et	
  al.	
  2012,	
  B	
  –	
  One	
  of	
  
the	
  genomic	
  selec4on	
  training	
  popula4on	
  phenotyping	
  field	
  at	
  Namulonge,	
  Uganda.	
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Germplasm 

Ø  Expansion	
  of	
  nematode	
  popula4on	
  

Ø  New	
  diploid	
  segrega4ng	
  
popula4ons	
  being	
  generated	
  

Ø  Phenotyping	
  of	
  exis4ng	
  popula4ons	
  

Ø  QTL	
  linkage	
  analysis	
  of	
  weevil	
  and	
  
nematode	
  popula4ons	
  based	
  on	
  
GBS	
  data	
  

Ø Analysis	
  of	
  of	
  GBS	
  data	
  for	
  training	
  
popula4on	
  	
  

Ø Phenotyping	
  of	
  GS	
  training	
  popula4on	
  

Ø Development	
  of	
  workflow	
  for	
  
implemen4ng	
  GS	
  in	
  banana	
  breeding	
  

Ø Expansion	
  of	
  training	
  popula4on	
  	
  	
  

Ø  Screening	
  of	
  germplasm	
  to	
  iden4fy	
  
resistant	
  and	
  suscep4ble	
  accessions	
  
to	
  various	
  produc4on	
  constraints	
  

	
  
Ø  Design	
  crosses	
  for	
  segrega4ng	
  

popula4ons	
  for	
  gene4c	
  studies,	
  
GWAS	
  and	
  QTL	
  linkage	
  analysis	
  

Results and Discussion 
 

Diploid	
   nematode-­‐segrega4ng	
  popula4on	
  was	
   developed	
  by	
   IITA	
  banana	
  breeding	
   (Dochez	
   et	
  

al.,	
   2009).	
   The	
  popula4on	
  was	
  used	
   to	
   generate	
   gene4c	
   linkage	
  maps	
  by	
  Mbanjo	
  et	
   al.,	
   2012	
  

(figure	
  3A)	
  based	
  on	
  SSR	
  markers	
  designed	
  from	
  expressed	
  sequence	
  tags	
  (Lorenzen	
  et	
  al.,	
  2011)	
  

and	
   diversity	
   array	
   technology	
   (DArT)	
   markers.	
   The	
   popula4on	
   has	
   also	
   been	
   genotyped	
   by	
  

sequencing	
   (GBS)	
   to	
   iden4fy	
   SNP	
   markers.	
   Together	
   with	
   the	
   phenotype	
   data,	
   the	
   QTLs	
  

responsible	
  for	
  nematode	
  resistance	
  will	
  be	
  iden4fied	
  once	
  the	
  analysis	
  is	
  complete.	
  

	
  

Two	
   F2	
   popula4ons	
   developed	
   by	
   NARO	
   and	
   segrega4ng	
   for	
   weevil	
   and	
   Fusarium	
   resistance	
  

have	
  been	
  genotyped	
  by	
   IITA	
  by	
  GBS	
  and	
  SNP	
  data	
  are	
  being	
  analyzed	
  to	
  generate	
  SNP-­‐based	
  

gene4c	
  linkage	
  map	
  for	
  iden4fica4on	
  of	
  QTLs	
  for	
  weevil	
  and	
  Fusarium	
  resistance.	
  

	
  	
  

Applica4on	
  of	
  genomic	
  selec4on	
  is	
  being	
  tested	
  at	
  IITA-­‐Uganda	
  for	
  the	
  first	
  4me	
  ever	
  in	
  banana	
  

breeding.	
  Over	
   300	
   accessions	
   including	
   parental	
   lines	
   and	
   hybrids	
   (training	
   popula4on)	
   have	
  

been	
  genotyped	
  by	
  GBS	
  and	
  are	
  being	
  phenotyped	
  in	
  three	
  fields	
  (figure	
  3B).	
  Disease	
  and	
  pest	
  

resistance	
   in	
   plants	
   is	
   controlled	
   by	
   one	
   or	
   few	
   QTLs	
   with	
   major	
   effect	
   on	
   the	
   phenotype.	
  

However,	
  yield	
  and	
  many	
  agronomically	
  important	
  traits	
  are	
  controlled	
  by	
  many	
  QTLs	
  with	
  small	
  

effects	
   on	
   the	
   phenotype.	
   GS	
   is	
   ideal	
   for	
   such	
   traits	
   as	
   it	
   u4lizes	
   genome-­‐wide	
   markers	
   to	
  

determine	
  the	
  genomic	
  es4mated	
  breeding	
  value	
  (GEBV)	
  of	
  the	
  individual	
  plant	
  (Meuwissen	
  et	
  

al.,	
  2001,	
  Nakaya	
  and	
  Isobe	
  2012).	
  This	
  is	
  a	
  model-­‐based	
  approach	
  which	
  requires	
  the	
  breeder	
  

to	
  generate	
  genotypic	
  data	
  which	
  are	
  fed	
  into	
  the	
  model	
  to	
  predict	
  phenotypic	
  performance	
  of	
  

the	
   individual	
   plant	
   (figure	
   1).	
   This	
   approach	
   holds	
   promise	
   to	
   improve	
   the	
   efficiency	
   of	
  

crossbreeding	
  by	
  reducing	
  the	
  selec4on	
  cycle	
  yet	
  increasing	
  gene4c	
  gain	
  per	
  unit	
  4me.	
  	
  



	
  
GENOMIC	
  SELECTION	
  TO	
  ACCELERATE	
  BANANA	
  BREEDING	
  

M.Nyine,	
  B.Uwimana,	
  R.	
  Swennen,	
  M.	
  Ba:e,	
  E.	
  Hribova,	
  J.	
  Lorenzen	
  J.	
  Dolezel	
  
	
  

Introduc*on	
  

² Genomic	
   selec*on	
   (GS)	
   is	
   a	
   form	
   of	
   marker-­‐assisted	
  
selec*on	
   which	
   involves	
   the	
   use	
   of	
   markers	
   across	
   the	
  
genome	
   to	
   predict	
   the	
   gene*c	
   es*mated	
   breeding	
   value	
  
(GEBV)	
  of	
  a	
  plant.	
  

² Phenotype	
   predic*on	
   is	
   based	
   on	
   a	
   genomic	
   selec*on	
  
model	
  

Why	
  genomic	
  selec*on?	
  

² Conven*onal	
  banana	
  breeding	
  is	
  much	
  slower	
  
² To	
  increase	
  gene*c	
  gain	
  per	
  unit	
  *me	
  
² Genotyping	
  is	
  becoming	
  much	
  cheaper	
  than	
  phenotyping	
  
² To	
  improve	
  both	
  variety	
  and	
  parental	
  lines	
  development	
  

pipelines	
  
² Selec*on	
  is	
  possible	
  at	
  nursery	
  stage	
  

Time	
  scale	
  for	
  conven*onal	
  breeding	
  

State	
  of	
  the	
  training	
  popula*on	
  
² 320	
  accessions	
  genotyped	
  
² Three	
  phenotyping	
  established	
  	
  
² Experimental	
  design:	
  CRD	
  with	
  three	
  plants	
  per	
  accession	
  
² Target	
  traits:	
  fruit	
  filling,	
  stature	
  and	
  suckering	
  	
  	
  
² Data	
  is	
  being	
  collected	
  on	
  22	
  addi*onal	
  traits	
  	
  

Conclusion	
  
Genomic	
  selec*on	
  coupled	
  with	
  increased	
  hybrids	
  from	
  
cross-­‐breeding	
  should	
  increase	
  efficiency	
  of	
  banana	
  
improvement	
  thus,	
  faster	
  variety	
  release	
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Articles in a popular magazine, Vesmír  

1. Banánovník z východoafrické vysočiny: Základní potravina pro miliony  

2. Banánovník z východoafrické vysočiny: Záhada původu a pěstování   

3. Banánovník z východoafrické vysočiny: Šlechtění banánovníku 
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Banánovníky jsou jednoděložné vytrvalé 
byliny vlhkých tropů a  subtropů (box). Je‑
jich kulturní formy lze rozdělit podle plo‑
dů. Některé jsou po dozrání sladké a  jedí 
se syrové, jiné se konzumují nezralé po te‑
pelném zpracování. Existují také banánov‑
níky s plody vhodnými pro přípravu nápo‑
jů, zejména banánového piva, banánovníky 
vhodné pro získávání vláken i okrasné baná‑
novníky. Na mezinárodním trhu převládají 
banány sladké (ovocné) a  z  nich zejména 
plody odrůdy Cavendish. Méně se na zahra‑

1. Základní potravina pro miliony

Moses Nyine 
Jaroslav Doležel

POTRAVINOVÉ 
ZDROJE

Plody banánovníku jsou pro miliony lidí základní potravinou. Je 
tomu tak zejména v Ugandě a dalších zemích africké oblasti Vel­
kých jezer. Banánovník má však mnohem širší využití. Může být 
například stavebním materiálem, dokáže nahradit talíře a afričtí 
kluci si z něj umějí udělat kopací míč. 

niční trhy vyvážejí banány s  vysokým ob‑
sahem škrobu používané na pečení (plain‑
tains). Plody pro vaření a přípravu nápojů 
jsou konzumovány téměř výhradně v oblas‑
tech, kde se pěstují. Okrasné banánovníky 
nemají jedlé plody a zdobí je květy a pana‑
šované listy. Z nepravého stonku další sku‑
piny banánovníků (především Musa textilis) 
se získávají vlákna bohatá na celulózu. Po 
vyčištění se označují jako manilské konopí 
a používají se např. na výrobu speciálního 
papíru pro filtry a bankovky. 

Banánovník ve východní Africe 

Pro obyvatele východní Afriky a  zejména 
Ugandy má banánovník velký kulturní, spo‑
lečenský a ekonomický význam. V této oblas‑
ti se pěstují hlavně odrůdy s plody vhodnými 

z východoafrické vysočiny
Banánovník

1. Drobní pěstitelé prodávají trsy 
nezralých plodů banánovníku 
matooke na místním tržišti 
v Mbarara v západní Ugandě. 
Trsy váží 20–40 kg a na tržiště je 
farmáři přivážejí na kolech.

http://www.vesmir.cz
http://www.vesmir.cz
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pro vaření (matooke) a v menší míře s plody 
používanými na přípravu džusu a banánové‑
ho piva (mbidde). V obou případech se sklí‑
zí nezralé zelené plody. Dužina plodů odrůd 
typu mbidde obsahuje taniny a má svíravou 
chuť. Proto se nechávají dozrát, získají žlutou 
barvu a  jejich dužina sladkou chuť. Teprve 
poté se z nich připravují nápoje. Dužina ne‑
zralých plodů skupiny odrůd matooke nemá 
svíravou chuť a na vaření se používají nezralé 
plody. Tento typ banánů představuje hlavní 
složku výživy obyvatelstva a jejich spotřeba 
dosahuje 400–600 kg na osobu za rok, což je 
nejvíce na světě. 

V Ugandě se banánovník pěstuje na ploše 
asi 1,5 milionů hektarů a  sklidí se více než 
10 milionu tun banánů, z nichž se 80 % spo‑
třebuje v místě produkce (obr. 1). Pěstování 
banánů je hlavním zdrojem příjmů mnoha 
farmářů, zejména v  centrální a  západní 
Ugandě. Banány vhodné pro vaření mají 
široké využití. Oloupané se vaří v páře a jedí 
se jako kaše s  různými omáčkami. Jejich 
dužina má krémově bílou nebo světle žlu‑
tou barvu a vařením v páře se stává zlatožlu‑
tou (obr. 3). Jídlo známé jako katogo (obr. 3 
vpravo) se připravuje vařením oloupaných 
banánů společně s  fazolemi nebo s  pastou 
z burských oříšků, masem, rybou nebo vnitř‑
nostmi. Obvykle se podává k snídani a zahří‑
vá tělo v době ranního chladu. 

Ženy po porodu dostávají k  jídlu katogo 
připravené s vnitřnostmi, protože se věří, že 
zahřátí břišní dutiny pomůže odstranit zby‑
tek krve z dělohy a  stimuluje produkci ma‑
teřského mléka. Banánová kaše je používána 
při přechodu kojenců k normální stravě. Va‑
řené banány jsou považovány za ideální stra‑
vu nemocných lidí, kteří ztratili chuť k jídlu. 
Pokud pacient nejí ani je, naznačuje to vážný 
stav a blízkost smrti. 

Z varných typů banánů se vyrábí mouka, 
která je vhodná pro přípravu kaše, instant‑
ního banánového pokrmu (instantní tooke), 
pečiva a sladkostí. 

Z  banánů se vyrábějí také různé typy lu‑
pínků a čipsů. Navíc balením potravin do lis‑
tů banánovníku před vařením v páře (obr. 4) 
dostává jídlo unikátní chuť. Ještě nerozvinu‑
té listy (tzv. cigar leaves) se udí, balí se do 
nich maso s kořením a připravuje se tak tra‑
diční pokrm luwombo (obr. 2). Ten se podá‑

vá jen významným hostům a v restauracích 
je dražší než ostatní jídla. Z plodů banánov‑
níků mbidde, druhého nejčastějšího typu 
ve východní Africe, se připravuje banáno‑
vé pivo známé jako „tonto“, dále džusy, ví‑
no a džin. 

Moses Nyine, MSc., (*1978) vystudoval molekulární biologii na 
Makerere University v  Ugandě a  v  Mezinárodním ústavu tropic-
kého zemědělství v  Ugandě se věnuje genetice a  šlechtění baná-
novníku. V  současné době je doktorandem Univerzity Palackého 
v  Olomouci a  na olomouckém pracovišti Ústavu experimentální 
botaniky AV ČR se zabývá genetickou diverzitou rodu banánovník 
a vývojem genomických metod šlechtění banánovníku. 
Prof. Ing. Jaroslav Doležel, DrSc., (*1954) vystudoval Agronomic
kou fakultu na Vysoké škole zemědělské v Brně. Zabývá se struk-
turou a evolucí genomu rostlin, vede Centrum strukturní a funkč-
ní genomiky Ústavu experimentální botaniky AV ČR a přednáší na 
Přírodovědecké fakultě Univerzity Palackého v Olomouci. Od roku 
2004 je členem Učené společnosti ČR, v  roce 2012 mu předseda 
AV ČR udělil prestižní Akademickou prémii – Praemium Academiae 
– a  v  roce 2014 obdržel cenu ministra školství, mládeže a  tělový-
chovy za mimořádné výsledky výzkumu, experimentálního vývoje 
a inovací. 

3. Vlevo jídlo připravené z kaše banánů matooke a omáčky z  ryby, lilku a  jiné 
zeleniny. Vpravo jídlo zvané katogo připravené z  banánů vařených společně 
s vnitřnostmi.

2. Příprava tradičního pokrmu luwombo vařením masa baleného v uzených lis-
tech banánovníku.
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Morfologie banánovníku
Banánovníky jsou vytrvalé jednoděložné byliny a  pěstované druhy patří 
k nejstatnějším bylinám vůbec. Zkrácený podzemní stonek (oddenek) nese 
kořeny, které rostou jen do hloubky 30–45 cm, a proto čerpají živiny z po-
vrchových půdních vrstev. Apikální meristém oddenku se nachází pod po-
vrchem půdy nebo na jeho úrovni. Postupně z něj ve šroubovici vyrůstají no-
vé listy a odstředivě směrem ven vytlačují listy starší. Nové listy jsou stoče-
né, a proto se jím říká „cigar leaf“. Listové pochvy jsou tuhé (vytrvávají i po 
odumření čepelí), dlouhé, vzájemně těsně shloučené a vytvářejí tak nepravý 
stonek, který zdánlivě vypadá jako kmen. Před rozkvětem přestanou růst 
nové listy a z apikálního meristému vyroste květenství, jehož dlouhá stop-
ka prorůstá vnitřkem nepravého stonku. Vlastní květenství se pak objeví na 
bázi shluku listových čepelí v horní části rostliny, často bývá převislé. V jeho 
spodní části se nejdříve ve shlucích vytvářejí samičí květy, které se vyvíjejí 
v plody (bobule), uprostřed jsou jalové květy a na konci květenství pak shlu-
ky samčích květů. Shluky květů jsou podepřené nápadně zbarvenými toul-
covitými listeny. Pěstované odrůdy jsou bezsemenné a množí se vegetativně 
pomocí odnoží, které vyrůstají z postranních pupenů na zkráceném stonku. 
Růst odnoží reguluje apikální meristém a mezi druhy a odrůdami banánov-
níku existují velké rozdíly v počtu rychlosti jejich růstu.

Ani nejedlé části banánovníku nepřijdou 
nazmar. Slupky a  nepravé stonky se použí‑
vají na krmení hospodářských zvířat. V ně‑
kterých rodinách je zase zvykem podávat jíd‑
lo místo na talířích na banánových listech. 
V chudších oblastech si lidé z listů banánov‑
níku staví paravány pro dočasné venkov‑
ní koupelny. U příležitosti různých slavnos‑
tí se z  banánových listů zhotovují kostýmy 
pro tradiční tance. V některých oblastech se 
vlákna z nepravého stonku používají na stav‑
bu střech chýší. Děti z chudých rodin, které 
si nemohou dovolit drahý kožený míč, si hra‑
jí s míči vyrobenými z banánovníku (obr. 5). 
Sušená hlavní žilka listu se navíc používá 
pro pletení košíků (viz malý obrázek nad 
nadpisem). 

Botanická klasifikace banánovníku

Banánovníky patří do řádu zázvorníkotva
ré (Zingiberales), čeledi banánovníkovité 
(Musaceae), rodu banánovník (Musa). Dru‑
hy banánovníku, kterých je asi sedmde‑
sát, se na základě novějších molekulárních 
analýz člení do dvou sekcí: Musa s diploid‑
ním počtem chromozomů rovným 22 a Cal-
limusa s  diploidním počtem chromozomů 
rovným 20 nebo 18. Na evoluci kulturních 
forem se podílela jak vnitrodruhová, tak 
mezidruhová hybridizace a  vedle diploid‑
ních klonů se dvěma sadami chromozomů 
existují klony triploidní se třemi sadami 
chromozomů a tetraploidní se čtyřmi sada‑
mi chromozomů. Prostřednictvím mezidru‑
hové hybridizace se na evoluci pěstovaných 
forem podílely zejména diploidní druhy 
Musa acuminata s  genomem A, M. balbisia-
na s  genomem B  a  jen ve velmi  malé míře 
pak M. textilis s genomem T a M. schizocarpa 
s genomem S. Složení genomů pěstovaných 
forem je tedy velmi pestré a zahrnuje diploi‑
dy (AA, BB, AB, AS), triploidy (AAA, AAB, 
ABB, AAT) a  tetraploidy (AAAA, AABB, 
ABBB, ABBT). 

Banánovníky východoafrické vysočiny 
patří do sekce Musa (podskupina Lujugira‑
-Mutika) a  jsou to triploidní kultivary s ge‑
nomem AAA. Předpokládá se, že vznikly 
vnitrodruhovou hybridizací mezi diploid‑
ními poddruhy M. acuminata s genomy AA. 
Jsou bezsemenné, obvykle sterilní a  množí 
se výhradně vegetativně. Tyto banánovníky 
dobře rostou ve vyšších nadmořských 
výškách (1400–2000 m  n. m.) a  pro opti‑
mální růst a  vývoj vyžadují průměrné roč‑
ní srážky okolo 1300 mm. Pěstují se v oblasti 
velkých jezer a  zejména v  oblasti Viktorii‑
na jezera a na vysočinách východoafrických 
zemí. Odtud také jejich název. Na základě 
morfologie je celkem 84 kultivarů pěstova‑
ných v Ugandě klasifikováno do čtyř skupin: 
Nfuuka, Nakitembe, Nakabululu a Musaka‑
la. I  když jsou mezi jednotlivými skupina‑
mi dobře patrné morfologické rozdíly, mole‑
kulární analýzy naznačují velkou podobnost 
jejich dědičných informací.� Ö

4. Nahoře: Vaření banánů balených v listech banánovníku.
5. Uprostřed: Listy banánovníku a jiné části rostliny jsou používány při zhotovo-
vání uměleckých předmětů, levných míčů a užitných předmětů.

Příště o původu banánovníku a jeho pěstování.
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potravinové zdroje — 

Východní Afrika je sekundárním 
centrem diverzity s asi 120 klonově množe-
nými odrůdami. Původ východoafrických 
banánovníků je však nejasný a vysvětlit se 
jej snaží několik hypotéz. 

První z nich předpokládá, že se tyto 
odrůdy do Afriky dostaly prostřednictvím 
obchodníků, kteří se plavili Indickým 
oceánem mezi jihovýchodní Asií a východ-
ní Afrikou. Ti mohli v období 100–600 n. l. 
do východní Afriky přivézt odnože jedlých 
odrůd. Největším problémem této hypotézy 
je absence stejných forem banánovníku 
v jihovýchodní Asii. 

Druhá hypotéza vysvětluje původ výcho-
doafrických banánovníků křížením mezi 
diploidními druhy, které se do východní 
Afriky dostaly z jihovýchodní Asie. Dosud se 
však nepodařilo nalézt žádné diploidní druhy 
nebo klony, jejichž dědičná informace by se 
podobala východoafrickým banánovníkům. 

Třetí hypotéza předpokládá změnu dě-
dičné informace odrůd přivezených z Asie 
následkem spontánních mutací, což mohlo 
mít za následek vznik kultivarů s odlišným 
fenotypem. Tzv. somaklonální variabilita 
spočívá v mutacích somatických (tělních) 
buněk, které zahrnují změny počtu a struk-
tury chromozomů. Somaklonální variabilita 
byla popsána u rostlin regenerovaných 
z buněk kultivovaných in vitro. Protože 
jsou banánovníky množeny vegetativně, 

změna dědičné informace v jejich somatic-
kých buňkách může být přenesena do další 
generace. Pro existenci takové variability 
u rostlin pěstovaných na poli však neexis-
tují žádné důkazy, a tak ani tato hypotéza 
nebyla dosud prokázána. 

V poslední době se výzkumné týmy věnují 
možnému podílu epigenetických změn na 
morfologické variabilitě východoafrických 
banánovníků. Epigenetické změny jsou 
dědičné a mohou mít za následek změnu 
fenotypu, a to aniž by došlo ke změně sek-
vencí DNA. Podstatou těchto změn, které 
ovlivňují funkci genů, jsou metylace DNA 

a modifikace histonů. Je známo, že mohou 
být vyvolány vnějším prostředím. Tyto 
změny lze jen obtížně identifikovat pomocí 
molekulárních markerů. Nicméně pokrok 
v oblasti molekulární biologie a genomiky 
dává naději, že bude v brzké době možné 
ověřit případný podíl epigenetických změn 
na vzniku východoafrických banánovníků. 

Posledním uvažovaným zdrojem morfo-
logických odlišností východoafrických 
banánovníků je epistáze. Tento jev zahrnuje 
situaci, kdy je jeden fenotypový znak ovliv-
něn více geny. 

Banánovník a ostatní 
organismy 
Východoafrické banánovníky ohrožuje řada 
chorob a napadá je mnoho škůdců. To může 
mít negativní dopad na výživu místních 
obyvatel a snížit příjmy malých farmářů, 
kteří si nemohou dovolit používání drahých 
pesticidů. Snad nejničivější chorobou vý-
chodoafrických banánovníků, stejně jako 
ostatních odrůd, je bakteriální vadnutí 
způsobené patologickou variantou musa-
cearum bakterie Xanthomonas campestris.1 
Infekce má za následek úplnou ztrátu úrody. 
Symptomy zahrnují předčasné dozrávání 
plodů a změnu barvy jejich dužiny (obr. 2), 
nekrózu samčího pupenu a přítomnost 
žlutého slizu na řezu nepravým stonkem 
(obr. 4). Dosud se nepodařilo nalézt odolné 
genotypy. Řešení by mohly přinést metody 
genetického inženýrství. Jediné, co mohou 

Banánovník pochází z jihovýchodní Asie, kde byly některé 
jeho typy asi před deseti tisíci lety domestikovány a kde se 
také nachází primární centrum jeho diverzity. V tomto teritoriu 
se vyvinuly banánovníky typické zvlášť pro indomalajskou 
a australasijskou oblast (viz rámeček na s. 38).

text Moses Nyine, Jaroslav Doležel

Banánovník 
z východoafrické 
vysočiny

2. Záhada původu a pěstování

Moses Nyine, MSc., (*1978) 
vystudoval molekulární biologii na Makerere 
University v Ugandě a v Mezinárodním 
ústavu tropického zemědělství v Ugandě se 
věnuje genetice a šlechtění banánovníku. 
V současné době je doktorandem Univerzity 
Palackého v Olomouci a na olomouckém 
pracovišti Ústavu experimentální botaniky 
AV ČR se zabývá genetickou diverzitou rodu 
banánovník a vývojem genomických metod 
šlechtění banánovníku. 

Prof. Ing. Jaroslav Doležel, 
DrSc., (*1954) vystudoval Agronomickou 
fakultu na Vysoké škole zemědělské v Brně. 
Zabývá se strukturou a evolucí genomu 
rostlin, vede Centrum strukturní a funkční 
genomiky Ústavu experimentální botaniky 
AV ČR a přednáší na Přírodovědecké fakultě 
Univerzity Palackého v Olomouci. Od roku 
2004 je členem Učené společnosti ČR, v roce 
2012 mu předseda AV ČR udělil prestižní 
Akademickou prémii – Praemium Academiae 

– a v roce 2014 obdržel 
Cenu ministra školství, 
mládeže a tělovýchovy 
za mimořádné výsledky 
výzkumu, experimentálního 
vývoje a inovací. 

farmáři v současné době dělat, je omezovat 
negativní dopady choroby vhodnými agro-
technickými postupy.

Hlavními škůdci pěstovaných banánov-
níků jsou nosatcovitý brouk Cosmopolites 
sordidus (obr. 5) a háďátka Radopholus similis 
(obr. 6), Pratylenchus spp. a Helicotylenchus 
spp. Nosatec C. sordidus páchá největší škody 
v larválním stadiu, kdy v oddenku vyžírá 
tunely, poškozuje růstový vrchol a cévní 
svazky. To způsobuje snížení příjmu vody 
a živin, zastavení růstu a vývoje. Sklizeň 
pak bývá ztrátová. Háďátka parazitují na ko-
řenech a takto vzniklá poškození vyvolávají 
nekrózy. Následkem je redukovaný příjem 
vody a živin a celková destrukce kořenového 
systému. V případě silných větrů dochází 
k vyvrácení rostlin, které nejsou v půdě 
dostatečně ukotveny. 

Z houbových chorob napadajících ba-
nánovník je nejzávažnější „Black Sigato-
ka“, kterou způsobuje houba Mycospaerella 

2. Plody banánovníku 
znehodnocené infekcí bakterií 
Xanthomonas campestris pv. 
musacearum, která způsobuje 
chorobu zvanou bakteriální 
vadnutí.

Snímky na s. 36–38 © Moses Nyine.

1)	 Tato choroba je v anglické literatuře označovaná 
jako Banana Xanthomonas Wilt (BXW).

1. Řez 
nepravým 
stonkem 
banánovníku 
napadeného 
houbou 
Fusarium 
oxysporum 
f. sp. cubense, 
která způsobuje 
fusariové 
vadnutí.

3. Květenství 
východoafrického 
banánovníku.

file:///C:/Vesm%c3%adr%20-%20redakce/redigov%c3%a1n%c3%ad/NYINE%20Moses%20DOLE%c5%bdEL%20Jaroslav/Nyine%20Mosed_DOLE%c5%bdEL%20Jaroslav_ban%c3%a1novn%c3%adk_2%c4%8d%c3%a1st/F:\Desktop\Vesmir_Photos\obr.13.jpg
file:///C:/Vesm%c3%adr%20-%20redakce/redigov%c3%a1n%c3%ad/NYINE%20Moses%20DOLE%c5%bdEL%20Jaroslav/Nyine%20Mosed_DOLE%c5%bdEL%20Jaroslav_ban%c3%a1novn%c3%adk_2%c4%8d%c3%a1st/F:\Desktop\Vesmir_Photos\obr.14.jpg
file:///C:/Vesm%c3%adr%20-%20redakce/redigov%c3%a1n%c3%ad/NYINE%20Moses%20DOLE%c5%bdEL%20Jaroslav/Nyine%20Mosed_DOLE%c5%bdEL%20Jaroslav_ban%c3%a1novn%c3%adk_2%c4%8d%c3%a1st/F:\Desktop\Vesmir_Photos\obr.15.jpg
file:///C:/Vesm%c3%adr%20-%20redakce/redigov%c3%a1n%c3%ad/NYINE%20Moses%20DOLE%c5%bdEL%20Jaroslav/Nyine%20Mosed_DOLE%c5%bdEL%20Jaroslav_ban%c3%a1novn%c3%adk_2%c4%8d%c3%a1st/F:\Desktop\Vesmir_Photos\obr.16.jpg


38  Vesmír  95,  leden 2016

fijiensis. Její spory se šíří větrem a houba 
napadá listy, které zasychají, a to vede ke 
snížení fotosynteticky aktivní plochy rost-
liny (obr. 7) a ke snížení výnosu. Banánov-
níky východní Afriky napadají také viry 
BSV (banana streak virus) a BBTV (banana 
bunchy top virus), které však produkci zá-
sadním způsobem neohrožují. 

Panamská choroba
Závažnou chorobou banánovníku je fusario-
vé vadnutí, které způsobuje houba srpov-
nička Fusarium oxysporum f. sp. cubense. Do 
rostliny vniká přes kořeny a ucpává její cév-
ní systém (obr. 1). Napadá mnoho kultivarů, 
zejména ovocné typy nesoucí sladké plody. 
Naštěstí pro východoafrické farmáře však 
nenapadá jimi pěstované odrůdy. Proti této 
chorobě, nazývané též „panamská“, dosud 
neexistuje účinná ochrana. Přitom to byla 
právě ona, která zásadním způsobem změ-
nila produkci sladkých banánů pro export. 
Její tropická rasa 1 (TR1) v letech 1940–1960 
postupně zničila plantáže osazené monokul-
turami odrůdy Gros Michel. Shodou okolnos-
tí je proti této rase odolná odrůda Cavendish, 
která nahradila na infikovaných plantážích 
odrůdu Gros Michel a zachránila tak celé 
odvětví produkce banánů pro export. V sou-
časné době se však začíná šířit tropická rasa 
4 (TR4), proti které není odrůda Cavendish 
odolná, a budoucí produkce banánů pro 
export začíná být opět ohrožena.  l

7. List banánovníku napadený houbou Mycospaerella fijiensis, která 
způsobuje chorobu Black Sigatoka.

Původ banánovníku
Předpokládaný původ a migrace banánovníku. Křížením mezi poddruhy 
banánovníku Musa acuminata (banksii, errans, malaccensis, microcarpa, 
zebrina) vnikly v oblasti jihovýchodní Asie bezsemenné diploidní formy s ge-
nomem AA. Některé z těchto klonů, které řadíme do podskupiny Mlali (šedé 
čárkované šipky), migrovaly na asijskou pevninu, kde mimo jiné daly vznik 
triploidnímu kultivaru Cavendish (s genomem AAA); křížením s druhem Musa 
balbisiana (s genomem BB) na indickém subkontinentu vznikly triploidní 
kultivary podskupiny Pome s genomem AAB. Zástupci podskupiny Mlali 
také migrovali na východoafrické pobřeží (čárkované šipky). Dnes se v jiho-
východní Asii nevyskytují a nacházejí se jen na východoafrickém pobřeží 
a přilehlých ostrovech (Zanzibar, Madagaskar a Komory). V jihovýchodní Asii 
vznikly rovněž triploidní klony nesoucí škrobové plody, které se však zde 
v podstatě nepěstují, a plné šipky znázorňují jejich migrace. Banánovníky 
s genomem AAB vzniky křížením diploidních forem (genom AA) s druhem 
M. balbisiana (genom BB) a migrovaly do západní Afriky (AAB Plantain) 
a opačným směrem na pacifické ostrovy (AAB Popoulou). Křížením diploidů 
s M. balbisiana jak na indickém subkontinentu, tak v jihovýchodní Asii 
vznikly rovněž triploidní klony s genomem ABB. Někteří autoři předpokládají 
migraci triploidních klonů s genomem AAA řazených do podskupiny Mutika 
na východoafrické pobřeží, kde mohly dát vznik v současnosti pěstovaným 
kultivarům východoafrické vysočiny.

Zdroj: Perrier et al.: Multidisciplinary perspectives on banana 
(Musa spp.) domestication. PNAS, July 12, 2011, vol. 108, no. 28, 11311–11318.
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v dalším čísle
o šlechtění banánovníku

6. Háďátko 
Radopholus 
similis parazitující 
na kořenech 
banánovníku 
způsobuje nekrózy 
a ničí kořenový 
systém.

4. Na řezu 
nepravým 
stonkem 
se bakteriální 
vadnutí projevuje 
přítomností 
žlutého slizu.

5. Nosatec 
Cosmopolites 
sordidus s čerstvě 
nakladenými 
vajíčky. Larvy 
vyžírají tunely ve 
stonku a poškozují 
růstový vrchol 
a cévní svazky.
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potravinové zdroje — 

Šlechtění 
banánovníků 
východoafrické 
vysočiny
Východoafrické banánovníky 
jsou citlivé vůči mnoha chorobám 
a škůdcům a nesou bezsemenné 
plody, které se vytvářejí bez 
oplodnění (jsou partenokarpické). 
Plané diploidní (2x) formy jsou 
odolné vůči mnoha chorobám 
a škůdcům a jsou fertilní s plody 
plnými semen. Tetraploidní hybrid 
(4x) se čtyřmi sadami chromozomů 
vzniká splynutím neredukované 
gamety odrůdy východoafrického 
banánovníku, která je triploidní (3x), 
a redukované gamety diploida, která 
je haploidní (x). Ve srovnání s odrůdou 
východoafrického banánovníku je 
trs plodů tetraploidního hybridu 
menší. Avšak potomek křížení tohoto 
hybridu s vybraným diploidem 
vykazuje heterózní efekt. Takto 
získaný sekundární triploid (3x) je 
větší než kterýkoliv z rodičů, má větší 
trs plodů a je odolný vůči chorobám 
a škůdcům. Pokud uspěje u farmářů 
a spotřebitelů, může být uvolněn jako 
nová odrůda.

Klasické způsoby šlechtění banánovníku jsou časově velmi 
náročné a mohly by být výrazně urychleny pomocí nových 
genomických metod pro vyhledávání perspektivních kříženců.

text Moses Nyine, Jaroslav Doležel

3. Šlechtění banánovníku

Banánovník 
z východoafrické 
vysočiny

Moses Nyine, MSc., (*1978) 
a prof. Ing. Jaroslav 
Doležel, DrSc., (*1954) viz Vesmír 
95, 36, 2016/1. 

1. Opylování 
východoafrického 
banánovníku.
2. Plody 
banánovníku 
Calcutta 4, jehož pyl 
se používá při křížení 
s východoafrickými 
banánovníky.
3. Diploidní 
klon banánovníku 
vybraný pro křížení 
s tetraploidními 
hybridy.
4. Plody tetraploidního 
hybridu získaného 
křížením triploidní 
odrůdy východoafrického 
banánovníku s diploidním 
klonem Calcutta 4.
5. Trs plodů sekundárního 
triploida získaného v rámci 
šlechtitelského programu.

1. EAHB – 3x 2. planý diploid – 2x

5. nová odrůda – 3x

3. vylepšený diploid 4. tetraploid – 4x
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Není pochyb o tom, že nejefektiv-
nější obranou proti chorobám a škůdcům, 
která nemá negativní vliv na prostředí, 
je pěstování rezistentních odrůd. Kromě 
choroby Banana Xanthomonas Wilt (Ves-
mír 95, 36, 2016/1) lze mezi planými druhy 
banánovníků nalézt zdroje rezistence a je 
velký zájem využít je ve šlechtění. U ba-
nánovníku je však problém se sterilitou – 
pěstované odrůdy jsou bezsemenné. Přesto 
má křížení smysl: s velmi malou frekvencí 
vznikají funkční pohlavní buňky i u steril-
ních triploidů a lze získat hybridní semena. 
Úspěšným pionýrem šlechtění byl Phil Rowe 
(1939–2001) z USA, který v Hondurasu pra-
coval pro několik společností. Jeho úspěšná 
strategie je založena na šlechtění diploid-
ních fertilních linií, které slouží jako zdroje 
pylu pro křížení se sterilními triploidními 
odrůdami. Kříženci, které takto získal, jsou 
odolní vůči mnoha chorobám a škůdcům, 
mají vysoké výnosy a patří mezi první nové 
odrůdy, které farmáři ochotně přijali. O své 
práci Rowe řekl: „křížíte rostliny, které 
netvoří semena, abyste získali lepší rostliny, 
které nemají semena“.

Na základě poznatků Phila Rowa bylo 
r. 1994 zahájeno šlechtění východoafrických 
banánovníků, na němž se podílejí Meziná-
rodní ústav tropického zemědělství a Ná-
rodní organizace pro zemědělský výzkum. 
Cílem je zlepšit odolnost místních odrůd vůči 
chorobě Black Sigatoka, broukům a háďát-
kům přenesením rezistence z planých druhů. 
Postup ukazuje rámeček na protější straně. 
Nejprve byly na základě výsledků křížení 
s diploidním klonem Calcutta 4 planého dru-
hu M. acuminata ssp. burmanicoides vybrány 
místní odrůdy s nejvyšší samičí fertilitou.  

Pak bylo jedenáct odrůd zařazeno do šlechti-
telského programu (obr. 1). Jejich křížením 
s klonem Calcutta 4 (obr. 2) se získaly tetra-
ploidní hybridy s jednou sadou chromozomů 
diploidního klonu a třemi sadami chromo-
zomů triploidních odrůd východoafrických 
banánovníků. Tetraploidní hybridy (obr. 4 
a velký snímek) se potom křížily s diploidní-
mi klony (obr. 3), které mají lepší vlastnosti 
než Calcutta 4. Výsledkem byly triploidní 
hybridy s jednou sadou chromozomů diploid-
ního rodiče a dvěma sadami chromozomů 
tetraploidního rodiče (obr. 5). 

Hybridní semena mají velmi nízkou 
klíčivost a jejich embrya jsou proto vyjmuta 
a dopěstovávána v podmínkách in vitro. Po 
postupném otužení se nové hybridy přesa-
zují na pokusné lokality a hodnotí se jejich 
odolnost vůči chorobám a škůdcům, kvalita 
plodů a výnos. Za 20 let trvání šlechtitel-
ského programu se získalo 27 nových odrůd 
zvaných Narita, z nichž farmáři již jednu 
pěstují ve velkém. I když je šlechtitelský 
program úspěšný, je náročný na ruční práci 
a čas, a je tedy drahý.

Zvyšování efektivity 
šlechtění
Získání nové odrůdy banánovníku vy-
žaduje nejméně 10 až 15 let a její přijetí 
konzervativními farmáři a konzumenty není 
jisté (jeden cyklus hodnocení výnosu a kvality 
plodů trvá jeden až jeden a půl roku od vysa-
zení odnože na pole). Rychlé šíření nových 
chorob a škůdců však vyžaduje rychlejší reakci 
šlechtitelů. Jednou z možností, jak urychlit 
hodnocení získaných kříženců, je jejich výběr 
v raných fázích růstu pomocí markerů DNA. 
Protože klasické šlechtění spočívá v opakování 

cyklů křížení a výběru potomstev s požado-
vanými vlastnostmi, výběr pomocí markerů 
(marker assisted selection, MAS) může vhodně 
doplnit klasické postupy šlechtění. Pokud 
je určitý marker DNA v těsné vazbě na daný 
znak, může být jeho nositel identifikován 
v rané fázi růstu na základě analýzy DNA. 
Šlechtění pomocí markerů se však u baná-
novníku zatím neuplatňuje, protože důležité 
znaky jsou komplexní a pěstované odrůdy 
jsou triploidní. 

Nadějí tak mohou být genomické metody, 
jejichž uplatnění se stalo reálné díky pokroku 
v nových technologiích sekvenování a analýze 
takto získaných dat. Za relativně nízkou cenu 
je dnes možné podrobně charakterizovat ge-
nomy mnoha jedinců. Charakterizace dědičné 

informace každého jedince pomocí velmi vy-
sokého počtu markerů DNA (typicky polymor-
fismy individuálních nukleotidů v sekvenci 
DNA, tzv. SNP) umožňuje navrhnout modely 
pro tzv. genomickou selekci. Tyto modely bu-
dou používány při výběru rodičovských part-
nerů, aniž by bylo nutné identifkovat markery 
vázané na konkrétní znaky. Genomická 
selekce je variantou výběru pomocí markerů, 
v níž jsou všechny dostupné markery souhrn-
ně používány pro odhad šlechtitelské hodnoty 
jedince, a to pomocí matematického modelu. 
Správnost modelu se ověřuje v tzv. trénovací 
populaci. V případě správného modelu je pak 
možné identifikovat hybridy s požadovanými 
vlastnostmi už v raných fázích jejich růstu. 
Použití genomické selekce ve šlechtění výcho-
doafrických banánovníků se v současné době 
testuje, a pokud se tento přístup osvědčí, může 
podstatně zefektivnit šlechtění a získávání no-
vých odrůd s požadovanými vlastnostmi.  l
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